\(\frac{x-1}{x}>\frac{1}{2}\)
\(\Leftrightarrow\frac{x-1}{x}-\frac{1}{2}>0\Leftrightarrow\frac{2x-2-x}{2x}>0\)
\(\Leftrightarrow\frac{x-2}{2x}>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2>0\\2x>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2< 0\\2x< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x>2\\x< 0\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x>2\\x< 0\end{matrix}\right.\)