Để pt có hai nghiệm pb\(\Leftrightarrow\Delta>0\Leftrightarrow m^2-4>0\) \(\Leftrightarrow\left(m-2\right)\left(m+2\right)>0\)\(\Leftrightarrow\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)
Theo định lí viet có: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=1\end{matrix}\right.\)
\(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\)
\(\Leftrightarrow x_1^2+2x_1+1+x_2^2+2x_2+1=2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\)
\(\Leftrightarrow m^2-2+2m=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-1+\sqrt{3}\left(L\right)\\m=-1-\sqrt{3}\left(N\right)\end{matrix}\right.\)
Vậy \(m=-1-\sqrt{3}\)