Cho x,y,z >0 và x+y+z=3.Chứng minh \(\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\ge\frac{3}{2}\)
Bài 1:Cho a,b,c là các số dương thỏa mãn điều kiện:a+b+c+ab+bc+ca=9.chứng minh rằng
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\ge5\)
Bài 2: Tìm cặp số (x;y) thỏa mãn:
\(x+\sqrt{2-x^2}=4y^2+4y+3\)
Bài 3:Cho các số thực dương x;y;z thỏa mãn x+y+z=4.chứng minh rằng:
\(\frac{1}{xy}+\frac{1}{xz}\ge1\)
Cho các số dương x,y,z thỏa mãn:
xy+yz+zx=1
Tìm GTLN của biểu thức
\(A=\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+y^2}}\)
Cho x,y,z là các số dương không thay đổi thỏa mãn: x+y+z=3. Tìm GTNN của biểu thức: \(T=x^5+y^5+z^5+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Với x>0, y>0. Chứng minh: \(\frac{1}{x^4+y^2+2xy^2}\le\frac{1}{2xy\left(x+y\right)}\)
Cho x, y là các số thực dương thỏa mãn x+y <=3.
Tìm GTNN của \(A=\frac{2}{3xy}+\sqrt{\frac{3}{y+1}}\)
Giải hệ phương trình bằng phương pháp đặt ẩn phụ
\(\left\{{}\begin{matrix}\frac{5}{x+y-3}-\frac{2}{x-y+1}=8\\\frac{3}{x+y-2}+\frac{1}{x-y+1}=1,5\end{matrix}\right.\)
Giải \(\left\{{}\begin{matrix}\frac{5}{x}+\frac{3}{y}=1\\\frac{2}{x}+\frac{1}{y}=-1\end{matrix}\right.\)
cho 2 số duơng x,y tmđk \(\frac{x}{1+x}+\frac{2y}{1+y}=1\)
tìm giá trị lớn nhất của biểu thức P =xy2