Sửa đề: \(a^3+b^3+c^3=-1099\)
___________________________________
\(\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{4}=\frac{b}{6}\)
Mà \(\frac{a}{4}=\frac{c}{9}\)
\(\Rightarrow\frac{a}{4}=\frac{b}{6}=\frac{c}{9}\\ \Rightarrow\frac{a^3}{64}=\frac{b^3}{216}=\frac{c^3}{819}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a^3}{64}=\frac{b^3}{216}=\frac{c^3}{819}=\frac{a^3+b^3+c^3}{64+216+819}=\frac{-1099}{1099}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{a^3}{64}=-1\\\frac{b^3}{216}=-1\\\frac{c^3}{819}=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a^3=-64\\b^3=-216\\c^3=-819\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-4\\b=-6\\c=-9\end{matrix}\right.\)
Vậy \(\left(a;b;c\right)=\left(-4;-6;-9\right)\)