Lời giải:
Có:
\(A=\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}=\frac{5(3a-2b)}{25}=\frac{3(2c-5a)}{9}=\frac{2(5b-3c)}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(A=\frac{5(3a-2b)+3(2c-5a)+2(5b-3c)}{25+9+4}=0\)
Do đó:
\(\left\{\begin{matrix} 3a-2b=0\\ 2c-5a=0\\ 5b-3c=0\end{matrix}\right.\Rightarrow \frac{a}{2}=\frac{b}{3}=\frac{c}{5}=t\)
\(\Rightarrow a=2t; b=3t;c=5t\)
Khi đó thay vào dữ kiện đề bài:
\(a^2+275=bc\Leftrightarrow 4t^2+275=15t^2\)
\(\Leftrightarrow 275=11t^2\Leftrightarrow t=\pm 5\)
\(\Rightarrow \left\{\begin{matrix} a=10\\ b=15\\ c=25\end{matrix}\right.\) hoặc \(\Rightarrow \left\{\begin{matrix} a=-10\\ b=-15\\ c=-25\end{matrix}\right.\)