Giải:
a) Ta có:
\(\left\{{}\begin{matrix}2a=7b\\5b=4c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{7}=\dfrac{b}{2}\\\dfrac{b}{4}=\dfrac{c}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{14}=\dfrac{b}{4}\\\dfrac{b}{4}=\dfrac{c}{5}\end{matrix}\right.\Leftrightarrow\dfrac{a}{14}=\dfrac{b}{4}=\dfrac{c}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{14}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{3a}{42}=\dfrac{7b}{28}=\dfrac{5c}{25}=\dfrac{3a+5c-7b}{42+25-28}=\dfrac{30}{39}=\dfrac{10}{13}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{14}=\dfrac{10}{13}\\\dfrac{b}{4}=\dfrac{10}{13}\\\dfrac{c}{5}=\dfrac{10}{13}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{140}{13}\\b=\dfrac{40}{13}\\c=\dfrac{50}{13}\end{matrix}\right.\)
Vậy ...
b) Tương tự câu a.
Chúc bạn học tốt!
a,Ta có:
2a=7b\(\Rightarrow\)\(\dfrac{a}{7}\)=\(\dfrac{b}{2}\)\(\Rightarrow\)\(\dfrac{a}{14}\)=\(\dfrac{b}{4}\)(1)
5b=4c\(\Rightarrow\)\(\dfrac{b}{4}\)=\(\dfrac{c}{5}\)\(\Rightarrow\)\(\dfrac{b}{4}\)=\(\dfrac{c}{5}\)(2)
Từ (1) và (2)\(\Rightarrow\)\(\dfrac{a}{14}\)=\(\dfrac{c}{5}\)=\(\dfrac{b}{4}\)\(\Rightarrow\)\(\dfrac{3a}{42}\)=\(\dfrac{5c}{25}\)=\(\dfrac{7b}{28}\)
Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\dfrac{3a}{42}\)=\(\dfrac{5c}{25}\)=\(\dfrac{7b}{28}\)=\(\dfrac{3a+5c-7b}{42+25-28}\)=\(\dfrac{30}{39}\)=\(\dfrac{10}{13}\)
\(\Rightarrow\)a=\(\dfrac{10}{13}\).14=\(\dfrac{140}{13}\)
b=\(\dfrac{10}{13}\).4=\(\dfrac{40}{13}\)
c=\(\dfrac{10}{13}\).5=\(\dfrac{50}{13}\)
Vậy.....
chúc bạn học tốt
b,10a=15b=21c và 3a-7b+5c=30
Từ 10a=15b=21c\(\Rightarrow\)\(\dfrac{10a}{210}\)=\(\dfrac{15b}{210}\)=\(\dfrac{21c}{210}\)hay \(\dfrac{a}{21}\)=\(\dfrac{b}{14}\)=\(\dfrac{c}{10}\)\(\Rightarrow\)\(\dfrac{3a}{63}\)=\(\dfrac{7b}{98}\)=\(\dfrac{5c}{50}\)
Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\dfrac{3a}{63}\)=\(\dfrac{7b}{98}\)=\(\dfrac{5c}{50}\)=\(\dfrac{3a-7b+5c}{63-98+50}\)=\(\dfrac{30}{15}\)=2
\(\Rightarrow\)a=2.21=42
b=2.14=28
c=2.10=20
Vậy...
Chúc bạn học tốt