Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=\frac{a_3-3}{7}=...=\frac{a_9-9}{1}=\frac{a_1-1+a_2-2+a_3+...+a_9-9}{9+8+7+...+1}=\frac{\left(a_1+a_2+...+a_9\right)-\left(1+2+...+9\right)}{45}=\frac{90-45}{45}=1\)
\(\Rightarrow a_1=1+9=10\)
\(\Rightarrow a_2=8+2=10\)
\(\Rightarrow a_3=7+3=10\)
...
\(\Rightarrow a_9=1+9=10\)
Vậy \(a_1=a_2=a_3=...=a_9=10\)
\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=...=\frac{a_9-9}{1}\)
Áp dụng dãy tỉ số bằng nhau:
\(\Rightarrow\frac{a_1-1}{9}=\frac{a_2-2}{8}=...=\frac{a_9-1}{1}=\frac{a_1+a_2+...+a_9-\left(1+2+3+...+9\right)}{9+8+7+...+1}=\frac{90-45}{45}=1\)
\(\Rightarrow a_1-1=9\)
\(a_2-2=8\)
\(a_3-3=7\)
...................
\(a_9-9=1\)
Vậy \(a_1=a_2=a_3=a_4=a_5=a_{ }_6=a_7=a_8=a_9=10\)