Viết phương trình tiếp tuyến của đồ thị hàm số (C) : \(y=x^3-6x^2+9x-2\)
a) Tại điểm M(1;2)
b) Tại giao điểm của đồ thị (C) với trục Oy
c) Tại điểm có hoành độ bằng -1
d) Tại điểm có tung độ bằng -2
e) Tại điểm N biết điểm N cùng 2 điểm cực trị của (C) tạo thành tam giác có diện tích bằng 6
Cho hàm số \(y=x^3-3x^2+2x\) có đồ thị (C)
a. Viết phương trình tiếp tuyến (C) tại điểm có hoành độ bằng -1
b. Viết phương trình tiếp tuyến của (C) tại điểm có tung độ bằng 6
c. Viết phương trình tiếp tuyến của (C) tại giao điểm của (C) với trục hoành.
Cho hàm số \(y=x^3-3x^2+4\left(C\right)\). Tìm tọa độ điểm M thuộc (C) sao cho tiếp tuyến của đồ thị tại điểm đó song song với đường thẳng \(y=9x+3\)
Có bao nhiêu tiếp tuyến với đồ thị (C): \(y=x^3-3x^2+2\) song song với đường thẳng y=9x-25
Cho hàm số \(y=x^3-3x^2+2\left(1\right)\)
Gọi M là điểm thuộc đồ thị (C) có hoành độ bằng -1. Tìm m để tiếp tuyến với (C) tại M song song với đường thẳng d : \(y=\left(m^2+5\right)x+3m+1\)
Cho hàm số \(y=X^3-3x^2+2\), có đồ thị là (C).
Gọi M là một điểm thuộc đồ thị (C). Viết phương trình tiếp tuyến của ( C) tại M, biết M cùng với hai điểm cực trị của đồ thị tạo thành một tam giác có diện tích bằng 6.
Cho hàm số \(y=\left(2-x\right)^2x^2\) có đồ thị (C)
a. Viết phương trình tiếp tuyến tại giao điểm (C) với Parabol \(y=x^2\)
b. Viết phương trình tiếp tuyến của (C), biết tiếp tuyến đi qua điểm A(2;0)
Cho hàm số \(y=\frac{mx+1}{x+m-2}\), có đồ thị là \(\left(C_m\right)\)
a. Viết phương trình tiếp tuyến của \(\left(C_1\right)\) , biết tiếp tuyến đi qua điểm P(3;1)
b. Viết phương trình tiếp tuyến của \(\left(C_1\right)\) , biết tiếp tuyến đi qua điểm A(2;-1)
c. Tìm m để tiếp tuyến tại điểm có hoành độ x = 1 vuông góc với đường thẳng y = x +1
Cho hàm số \(y=x^3-3x^2+2\) có đồ thị (C).
Gọi M, N là hai điểm phân biệt trên (C) sao cho 2 tiếp tuyến tại M, N song song với nhau và đường thẳng MN cắt trục hoành, trục tung lần lượt tại A, B khác O sao cho \(AB=\sqrt{10}\).
Viết phương trình hai tiếp tuyến đó.