c: \(=\dfrac{x^2+x-x^2+x+2}{\left(x-1\right)\left(x+1\right)}=\dfrac{2}{x-1}\)
a) \(\dfrac{x^2+xy}{x^2-y^2}=\dfrac{x\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}=\dfrac{x}{x-y}\)
b)\(\dfrac{x}{x-1}-\dfrac{x}{x+1}+\dfrac{2}{x^2-1}=\dfrac{x\left(x+1\right)-x\left(x-1\right)+2}{\left(x-1\right)\left(x+1\right)}=\dfrac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{2}{x-1}\)
b) x^2+xy/x^2-y^2= x(x+y) /(x+y) (x-y) =x/x-y
c) =2/x-1