\(A=-\dfrac{9xy^2}{3xy}+\dfrac{6x^2y}{3xy}+\dfrac{6x^2y}{2x^2}+\dfrac{2x^4}{2x^2}\)
\(=-3y+2x+3y+x^2\)
\(=x^2+2x+1-1=\left(x+1\right)^2-1\ge-1\)
Dấu '=' xảy ra khi x=-1
\(A=-\dfrac{9xy^2}{3xy}+\dfrac{6x^2y}{3xy}+\dfrac{6x^2y}{2x^2}+\dfrac{2x^4}{2x^2}\)
\(=-3y+2x+3y+x^2\)
\(=x^2+2x+1-1=\left(x+1\right)^2-1\ge-1\)
Dấu '=' xảy ra khi x=-1
Làm tính chia :
a) \(\left(-2x^5+3x^2-4x^3\right):2x^2\)
b) \(\left(x^3-2x^2y+3xy^2\right):\left(-\dfrac{1}{2}x\right)\)
c) \(\left(3x^2y^2+6x^2y^3-12xy\right):3xy\)
1. Thực hiện:
a)\(\left(3x^2y^3-5x^2y^2+6x^4y^7-9x^5y^4\right):x^2y^2\)
b) \(\left(6a^3-3a^2\right):a^2+\left(12a^2+9a\right):3a\)
Thực hiện phép tính
\(\left(15x^4y^6-12x^3y^4-18x^2y^3\right):\left(-6x^2y^2\right)\)
Thực hiện phép tính
a) \(\left(-6x^3+7x^2-5x+2\right):\left(-2x+1\right)\)
b) \(\left(x^4-x^2+2x-1\right):\left(x^2+x-1\right)\)
Tìm n để mỗi phép chia sau là phép chia hết (n là số tự nhiên) :
a) \(\left(5x^3-7x^2+x\right):3x^n\)
b) \(\left(5xy^2+9xy-x^2y^2\right):\left(-xy\right)\)
c) \(\left(x^3y^3-\dfrac{1}{2}x^2y-x^3y^2\right):\dfrac{1}{3}x^2y^2\)
Làm tính chia :
a) \(\left(5x^4-3x^3+x^2\right):3x^2\)
b) \(\left(5xy^2+9xy-x^2y^2\right):\left(-xy\right)\)
c) \(\left(x^3y^3-\dfrac{1}{2}x^2y^3-x^3y^2\right):\dfrac{1}{3}x^2y^2\)
Tìm n \(\left(n\in\mathbb{N}\right)\) để mỗi phép chia sau đây là phép chia hết
a) \(\left(x^5-2x^3-x\right):7x^n\)
b) \(\left(5x^5y^5-2x^3y^3-x^2y^2\right):2x^ny^n\)
thực hiện phép tính rồi tìm giá trị nhỏ nhất của biểu thức
A=(9xy^2 -6x^2):(-3xy)+(6x^2 y+2x^4):(2x^2)
Làm tính chia:
a) \(5x^2y^4:10x^2y\)
b)\(\dfrac{3}{4}x^3y^3:\left(-\dfrac{1}{2}x^2y^2\right)\)
c)\(\left(-xy\right)^{10}:\left(-xy\right)^5\)