thực hiện phép tính
a.\(\dfrac{x}{3x+y}+\dfrac{x}{3x-y}-\dfrac{2xy}{y^2-9x^2}\)
b.\(\dfrac{4x+5}{x^2+5x}-\dfrac{3}{x+5}\)
1.rút gọn biểu thuc P=\(\dfrac{2}{x+3}+\dfrac{1}{x-3}+\dfrac{9-x}{9-x^2}\) với x\(\ne-3vàx\ne3\)
2.thực hiện phép tính \(\left(2x^4-3x^3-3x^2+6x-1\right):\left(x^2-2\right)\)
\(\left(15x^4y^6-12^3y^4-18x^2y^3\right):\left(-6x^2y^2\right)\)
Giải PT sau:
a, 3x - 7 = 0
b, 8 - 5x = 0
c, 3x - 2 = 5x + 8
d, \(\dfrac{3x-2}{3}\) = \(\dfrac{1-x}{2}\)
e, ( 5x + 1)(x - 3) = 0
f, (x + 1)(2x - 3) = 0
g, 4x(x + 3) - 5(x + 3) = 0
h, 8(x - 6) - 2x(6 - x) = 0
i, \(\dfrac{2}{x-1}\) + \(\dfrac{1}{x}\) = \(\dfrac{2x+5}{x^2-x}\)
k, \(\dfrac{3}{x+2}\) - \(\dfrac{2}{x-2}\) = \(\dfrac{2-x}{x^2-4}\)
m, \(\dfrac{3}{x}\) - \(\dfrac{2}{x-3}\) = \(\dfrac{4-x}{x^2-3}\)
n,\(\dfrac{3}{2x+10}\)+ \(\dfrac{2x}{x^2-25}\) = \(\dfrac{3}{x-5}\)
u, \(\dfrac{2}{x+3}\) - \(\dfrac{3}{x-2}\) = \(\dfrac{x+4}{\left(x+3\right)\left(x-2\right)}\)
a,\(\dfrac{x^3+2x}{x^3+1}+\dfrac{2x}{x^2-x+1}+\dfrac{1}{x+1}\)
b,\(\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}+\dfrac{3x-2}{2x-4x^2}\)
Thực hiện phép tính:
a, \(\dfrac{x^2-1}{2x-y}+\dfrac{3x^2-3}{y-2x}-\dfrac{2x^2+7}{y-2x}\)
\(b,\dfrac{x+y}{1-xy}+\dfrac{x-y}{1-xy}-\dfrac{2x-3y}{xy-1}\)
Giải các phương trình sau:
1. \(a,\dfrac{6}{x-1}-\dfrac{4}{x-3}=\dfrac{8}{2x-6}\)
\(b,\dfrac{1}{x-2}+\dfrac{5}{x+1}=\dfrac{3}{2-x}\)
\(c,\dfrac{3x}{x-2}-\dfrac{x}{x-5}=\dfrac{3x}{\left(x-2\right)\left(5-x\right)}\)
2. \(a,\left(x+2\right)\left(3-4x\right)=x^2+4x+4\)
\(b,2x^2-6x+1\)
( \(\dfrac{x+1}{2\left(x-1\right)}+\dfrac{3}{x^2-1}-\dfrac{x+3}{2x+2}\) ). \(\dfrac{4x^2-4}{5}\)
\(\dfrac{x}{x-3}-\dfrac{x^2+3x}{2x+3}.\left(\dfrac{x+3}{x^2-3x}-\dfrac{x}{x^2-9}\right)\)
\(\left(\dfrac{x+1}{x}\right)^2:\left(\dfrac{x^2+3}{x^2}+\dfrac{2}{x+1}.\left(\dfrac{1}{x}+1\right)\right)\)
Cộng các phân tử:
a)\(\dfrac{2x-3}{x}+\dfrac{1-x}{x+2}+\dfrac{4x}{x-1}\)
b)\(\dfrac{1}{1+x}+\dfrac{1}{x-1}+\dfrac{3x}{1-x^2}\)
c)\(\dfrac{x^3}{x+1}+\dfrac{x^2}{x-1}+\dfrac{1}{x+1}+\dfrac{1}{x-1}\)
d)\(\dfrac{2x+y}{2x^2-xy}+\dfrac{16x}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)
Thực hiện phép tính:
\(a,\left(x-\dfrac{x^2+y^2}{x+y}\right)\left(\dfrac{1}{y}+\dfrac{2}{x-y}\right)\)
\(b,\left(\dfrac{2}{x^2-1}+\dfrac{x^2-3}{3x^2-1}\right):\left[\dfrac{1}{x}-\dfrac{2x\left(x^2-3\right)}{\left(x^2-1\right)\left(3x^2-1\right)}\right]\)