a,
\(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\\ =\sqrt{3-2\sqrt{3}+1}+\sqrt{3+2\sqrt{3}+1}\\ =\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\\ =\left|\sqrt{3}-1\right|+\left|\sqrt{3}+1\right|\\ =\sqrt{3}-1+\sqrt{3}+1\\ =2\sqrt{3}\)
b,
\(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}\\ =\sqrt{24+4\cdot\sqrt{4}\cdot\sqrt{5}}+\sqrt{9-4\sqrt{5}}\\ =\sqrt{24+4\sqrt{20}}+\sqrt{9-4\sqrt{5}}\\ =\sqrt{20+4\sqrt{20}+4}+\sqrt{5-4\sqrt{5}+4}\\ =\sqrt{\left(\sqrt{20}+4\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\\ =\left|\sqrt{20}+4\right|+\left|\sqrt{5}-2\right|\\ =\sqrt{20}+4+\sqrt{5}-2\\ =2+2\sqrt{5}+\sqrt{5}\\ =2+3\sqrt{5}\)
c,
\(\sqrt{17-12\sqrt{2}}+\sqrt{9+4\sqrt{2}}\\ =\sqrt{17-6\cdot\sqrt{4}\cdot\sqrt{2}}+\sqrt{9+2\cdot\sqrt{4}\cdot\sqrt{2}}\\ =\sqrt{17-6\sqrt{8}}+\sqrt{9+2\sqrt{8}}\\ =\sqrt{9-6\sqrt{8}+8}+\sqrt{8+2\sqrt{8}+1}\\ =\sqrt{\left(3-\sqrt{8}\right)^2}+\sqrt{\left(\sqrt{8}+1\right)^2}\\ =\left|3-\sqrt{8}\right|+\left|\sqrt{8}+1\right|\\ =3-\sqrt{8}+\sqrt{8}+1\\ =4\)
d,
\(\sqrt{6-4\sqrt{2}}+\sqrt{22-12\sqrt{2}}\\ =\sqrt{6-4\sqrt{2}}+\sqrt{22-4\cdot\sqrt{9}\cdot\sqrt{2}}\\ =\sqrt{6-4\sqrt{2}}+\sqrt{22-4\sqrt{18}}\\ =\sqrt{4-4\sqrt{2}+2}+\sqrt{18-4\sqrt{18}+4}\\ =\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{18}-2\right)^2}\\ =\left|2-\sqrt{2}\right|+\left|\sqrt{18}-2\right|\\ =2-\sqrt{2}+\sqrt{18}-2\\ =-\sqrt{2}+\sqrt{18}\\ =-\sqrt{2}+3\sqrt{2}\\ =2\sqrt{2}\)
b,
\(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}\\ =\sqrt{24+4\cdot\sqrt{4}\cdot\sqrt{5}}+\sqrt{9-4\sqrt{5}}\\ =\sqrt{24+4\sqrt{20}}+\sqrt{9-4\sqrt{5}}\\ =\sqrt{20+4\sqrt{20}+4}+\sqrt{5-4\sqrt{5}+4}\\ =\sqrt{\left(\sqrt{20}+2\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\\ =\left|\sqrt{20}+2\right|+\left|\sqrt{5}-2\right|\\ =\sqrt{20}+2+\sqrt{5}-2\\ =\sqrt{20}+\sqrt{5}\\ =\sqrt{4}\cdot\sqrt{5}+\sqrt{5}\\ =2\sqrt{5}+\sqrt{5}\\ =3\sqrt{5} \)