Theo giả thiết ta có: tâm \(I(30;40)\) và bán kính \(R = 50\)
Vậy phương trình tập hợp các điểm xa nhất mà vòi nước có thể phun tới là:
\({\left( {x - 30} \right)^2} + {\left( {y - 40} \right)^2} = {50^2}\)
Theo giả thiết ta có: tâm \(I(30;40)\) và bán kính \(R = 50\)
Vậy phương trình tập hợp các điểm xa nhất mà vòi nước có thể phun tới là:
\({\left( {x - 30} \right)^2} + {\left( {y - 40} \right)^2} = {50^2}\)
Một sân khấu đã được thiết lập một hệ trục tọa độ bởi đạo diễn có thể sắp đặt ánh sáng và xác định vị trí của các diễn viên. Cho biết một đèn chiếu đang gọi trên sân khấu một vùng sáng bên trong đường tròn (C) có phương trình \({\left( {x - 13} \right)^2} + {\left( {y - 4} \right)^2} = 16\)
a) Tìm tọa độ tâm và bán kính của đường tròn (C)
b) Cho biết tọa độ trên sân khấu của 3 diễn viên A, B, C như sau: \(A(11;4).B(8;5),C(15;5)\).Diễn viên nào đang được đèn chiếu sáng?
Một vận động viên ném đĩa đã vung đĩa theo một đường tròn \((C)\) có phương trình:
\({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = \frac{{169}}{{144}}\).
Khi người đó vung đĩa đến vị trí điểm \(M\left( {\frac{{17}}{{12}};2} \right)\) thì buông đĩa (hình 4). Viết phương trình tiếp tuyến của đường tròn \((C)\) tại điểm M.
Cho đường tròn \((C)\) có phương trình \({x^2} + {y^2} - 2x - 4y - 20 = 0\)
a) Chứng tỏ rằng điểm \(M(4;6)\) thuộc đường tròn \((C)\)
b) Viết phương trình tiếp tuyến của \((C)\) tại điểm \(M(4;6)\)
c) Viết phương trình tiếp tuyến của \((C)\)song song với đường thẳng \(4x + 3y + 2022 = 0\)
Viết phương trình đường tròn (C) trong các trường hợp sau:
a) (C) có tâm \(O\left( {0;0} \right)\), bán kính \(R = 4\)
b) (C) có tâm \(I\left( {2; - 2} \right)\), bán kính \(R = 8\)
c) (C) đi qua 3 điểm \(A(1;4),B(0;1),C(4;3)\)
Viết phương trình tiếp tuyến của đường tròn \((C):{x^2} + {y^2} - 2x - 4y - 20 = 0\) tại điểm \(A(4;6)\).
Lập phương trình đường tròn trong các trường hợp sau:
a) \((C)\) có tâm \(I(1;5)\) và bán kính \(r = 4\)
b) \((C)\) có đường kính MN với \(M(3; - 1)\)và \(N(9;3)\)
c) \((C)\) có tâm \(I(2;1)\) và tiếp xúc với đường thẳng \(5x - 12y + 12 = 0\)
d) \((C)\) có tâm \(A(1; - 2)\) và đi qua điểm \(B(4; - 5)\)
Phương trình nào trong các phương trình sau đây là phương trình đường tròn? Tìm tọa độ tâm và bán kính của đường tròn đó
a) \({x^2} + {y^2} - 2x - 4y - 20 = 0\)
b) \({\left( {x + 5} \right)^2} + {\left( {y + 1} \right)^2} = 121\)
c) \({x^2} + {y^2} - 4x - 8y + 5 = 0\)
d) \(2{x^2} + 2{y^2} + 6x + 8y - 2 = 0\)
Phương trình nào trong các phương trình sau đây là phương trình đường tròn? Tìm tọa độ tâm và bán kính của đường tròn đó.
a) \({x^2} + {y^2} - 6x - 8y + 21 = 0\)
b) \({x^2} + {y^2} - 2x + 4y + 2 = 0\)
c) \({x^2} + {y^2} - 3x + 2y + 7 = 0\)
d) \(2{x^2} + 2{y^2} + x + y - 1
Cho điểm \({M_0}\left( {{x_0};{y_0}} \right)\) nằm trên đường tròn \((C)\) tâm \(I(a;b)\)và cho điểm\(M(x;y)\) tùy ý trong mặt phẳng Oxy. Gọi \(\Delta \) là tiếp tuyến với \((C)\) tại \({M_0}\)
a) Viết biểu thức tọa độ của hai vt \(\overrightarrow {{M_0}M} \) và \(\overrightarrow {{M_0}I} \)
b) Viết biểu thức tọa độ của tích vô hướng của hai vt \(\overrightarrow {{M_0}M} \) và \(\overrightarrow {{M_0}I} \)
c) Phương trình \(\overrightarrow {{M_0}M} .\overrightarrow {{M_0}I} = 0\)là phương trình của đường thẳng nào?