\(\text{Cho A}=\frac{2}{x-2}-\frac{2}{\left(x-2\right)\left(x+1\right)}.\left(1+\frac{3x+x^2}{x+3}\right)\)
a,Tìm ĐKXĐ của x
b,Chứng tỏ giá trị của A không phụ thuộc vào giá trị của x
\(\text{Giải phương trình:}\)
\(a,\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)
\(b,\frac{x-49}{50}+\frac{x-50}{49}=\frac{49}{x-50}+\frac{50}{x-49}\)
\(c,\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}=\frac{1}{x+3}\)
CMR với mọi x ∈ R , ta có: \(\left(\frac{12}{5}\right)^x+\left(\frac{15}{4}\right)^x+\left(\frac{20}{3}\right)^x\text{≥}3^x+4^x+5^x\)
\(\text{Cho A}=\left(\frac{1}{1-x}-1\right):\left(x+1-\frac{1-2x}{1-x}\right)\)
a,Rút gọn A
b,Tìm x để A=1/2
c,Tìm x để A>1
d,Tìm giá trị nguyên của x để A có giá trị nguyên
Bài 1. Tìm GTNN của A.
A =\(\frac{x^4+2x^3+8x+16}{x^4-2x^3+8x^2-8x+16}\)
Bài 2. Rút gọn biểu thức và tính giá trị với x + y = 2005
P = \(\frac{x\left(x+5\right)+y\left(y+5\right)+2\left(xy-3\right)}{x\left(x+6\right)+y\left(y+6\right)+2xy}\)
Bài 3. Cho b>a>0 và \(\frac{a^2+b^2}{ab}\) = \(\frac{10}{3}\)
Tính A = \(\frac{a-b}{a+b}\)
a) Tìm x,y biết: x4+x2-y2+y+10=0
b) Tính giá trị biểu thức: \(\frac{\left(1+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(29^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(30^4+\frac{1}{4}\right)}\)
tìm x biết :
\(\frac{1}{\left(x-1\right)x}+\frac{1}{\left(x-2\right)\left(x-1\right)}+\frac{1}{\left(x-3\right)\left(x-2\right)}+\frac{1}{\left(x-4\right)\left(x-3\right)}=\frac{x}{x^2-4x}\)
Với x>0. GTNN của A= \(\frac{\left(x+6\right)\left(x+19\right)}{x}\)
Tìm x :a) \(\frac{x-214}{86}+\frac{x-132}{84}+\frac{x-54}{82}+\frac{x-20}{80}=10\)
b) \(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\left(-3,2\right)+\frac{2}{5}\right|\)
c) \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)