Bài 1. Tìm GTNN của A.
A =\(\frac{x^4+2x^3+8x+16}{x^4-2x^3+8x^2-8x+16}\)
Bài 2. Rút gọn biểu thức và tính giá trị với x + y = 2005
P = \(\frac{x\left(x+5\right)+y\left(y+5\right)+2\left(xy-3\right)}{x\left(x+6\right)+y\left(y+6\right)+2xy}\)
Bài 3. Cho b>a>0 và \(\frac{a^2+b^2}{ab}\) = \(\frac{10}{3}\)
Tính A = \(\frac{a-b}{a+b}\)
\(A=\left(x+3\right)\left(x+4\right)\left(x+5\right)\left(x+6\right)\)
tìm gtnn của A
\(\text{Tìm GTNN:}\)
\(a,\frac{x^2+4}{x}\)\(\text{với }x>0\)
\(c,\left|x-1\right|+\left|x-2\right|\)
Rút gọn:
a) P = \(\frac{bc}{\left(a-b\right)\left(a-c\right)}+\frac{ca}{\left(b-c\right)\left(b-a\right)}+\frac{ab}{\left(c-a\right)\left(c-b\right)}\)
b) Q = \(\frac{\left(x+\frac{1}{x}\right)^6-\left(x^6+\frac{1}{x^6}\right)-2}{\left(x+\frac{1}{x}\right)^3+x+\frac{1}{x^3}}\)
Giúp mik nhé!
Tìm GTNN của : \(F=\left(3x-5\right)^2-6\left|3x-5\right|+10\)
Tìm GTLN : \(I=\dfrac{\left(5x+8\right)\left(2x+5\right)}{x}\left(x>0\right)\)
Tìm GTNN của \(A=x\left(x-3\right)\left(x-4\right)\left(x-7\right)\)
a) Tìm x,y biết: x4+x2-y2+y+10=0
b) Tính giá trị biểu thức: \(\frac{\left(1+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(29^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(30^4+\frac{1}{4}\right)}\)
Tìm x : \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+\left|x+\frac{1}{12}\right|+\left|x+\frac{1}{20}\right|+...+\left|x+\frac{1}{110}\right|=11x\)
Giải các phương trình:
a) \(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
b) \(\frac{3}{\left(x-1\right)\left(x-2\right)}+\frac{2}{\left(x-3\right)\left(x-1\right)}=\frac{1}{\left(x-2\right)\left(x-3\right)}\)
c) \(1+\frac{1}{x+2}=\frac{12}{8+x^3}\)
d) \(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{\left(x-3\right)\left(x+3\right)}\)