\(\frac{1}{2}x+0y=12\Leftrightarrow\frac{1}{2}x=12\Leftrightarrow x=24\)
Vậy nghiệm của phương trình trên được biểu diễn bởi đường thẳng có phương trình là $x=24$ Do đó bạn xem lại câu hỏi có nhầm gì không nhé!
\(\frac{1}{2}x+0y=12\Leftrightarrow\frac{1}{2}x=12\Leftrightarrow x=24\)
Vậy nghiệm của phương trình trên được biểu diễn bởi đường thẳng có phương trình là $x=24$ Do đó bạn xem lại câu hỏi có nhầm gì không nhé!
Giải các hệ phương trình sau
a)\(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+1}=1\\2x+3y=xy+5\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\left(x-y\right)^2+3\left(x-y\right)=4\\2x+3y=12\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\frac{x}{y}+\frac{y}{x}=\frac{13}{6}\\x+y=5\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}x+y+xy=7\\x+y^2+xy=13\end{matrix}\right.\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}\frac{x}{y}-\frac{x}{x+12}=1\\\frac{x}{x-12}-\frac{x}{y}=2\end{matrix}\right.\)
Giải hệ phương trình :
(x-y)(1-\(\frac{1}{xy}\)) = 2
(\(x^2-y^2\))\(\left(1-\frac{1}{x^2y^2}\right)\)=12
Giải hệ phương trình:
1, \(\left\{{}\begin{matrix}x^2+1+y^2+xy=y\\x+y-2=\frac{y}{1+x^2}\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^3+8y^3-4xy^2=1\\2x^4+8y^4-2x-y=0\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}x^2+y^2=\frac{1}{5}\\4x^2+3x-\frac{57}{25}=-y\left(3x+1\right)\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}\sqrt{12-y}+\sqrt{y\left(12-x\right)}=12\\x^3-8x-1=2\sqrt{y-2}\end{matrix}\right.\)
5, \(\left\{{}\begin{matrix}\left(1-y\right)\sqrt{x-y}+x=2+\left(x-y-1\right)\sqrt{y}\\2y^2-3x+6y+1=2\sqrt{x-2y}-\sqrt{4x-5y-3}\end{matrix}\right.\)
giả các hệ phương trình sau :
a) \(\left\{{}\begin{matrix}\dfrac{-3}{x-y+1}+\dfrac{1}{x +y-2}=12\\\dfrac{2}{x-y+1}-\dfrac{3}{x+y-2}=-1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2+2\left(y^2+2y\right)=10\\3x^2-\left(y^2+2y\right)=9\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\dfrac{7}{\sqrt{x-1}}-\dfrac{5}{\sqrt{y+2}}=\dfrac{9}{2}\\\dfrac{3}{\sqrt{x-1}}+\dfrac{2}{\sqrt{y+2}}=4\end{matrix}\right.\)
Giải các hệ phương trình sau:
\(\left\{{}\begin{matrix}\frac{14}{x-y+2}-\frac{10}{x+y-1}=9\\\frac{3}{x-y+2}-\frac{2}{x+y-1}=4\end{matrix}\right.\)
Cho biểu thức P=\(\frac{\sqrt{x}-3}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\)
a Rút gọn biểu thức P
b Tìm x để P=\(\frac{7}{12}\)
c Tìm x để P>\(\frac{1}{2}\)
Giải các phương trình sau theo phương pháp đặt ẩn phụ:
a.{\(\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\)
\(\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\)
b.{\(4\sqrt{x+3}-9\sqrt{y+1}=2\)
\(5\sqrt{x+3}+3\sqrt{y+1}=31\)
CHUYÊN ĐỀ PHƯƠNG TRÌNH - HỆ PHƯƠNG TRÌNH CHỌN LỌC
Bài 1: Giải phương trình ẩn x sau :
a) \(\sqrt{\frac{1}{x+3}}+\sqrt{\frac{5}{x+4}}=4\)
b) \(\sqrt[8]{1-x}+\sqrt[3]{1+x}+\sqrt[8]{1-x^2}=3\)
Bài 2: Giải hệ phương trình :
a) \(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\frac{x^2+4y^2}{2}}+\sqrt{\frac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\frac{y}{2x+1}=\frac{\sqrt{2x+1}+1}{\sqrt{y}+1}\\4x^2+5=y^2\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x^2-xy+y^2=3\\z^2+yz+1=0\end{matrix}\right.\)
P/s: ai có lời giải đúng, đẹp tặng 1GP mỗi phần.