Chọn phương án (B)
Tam giác đều ABC nội tiếp đường tròn tâm O bán kính R. Khi đó \(\widehat{BOC}\) có số đo bằng \(120^0\)
Chọn phương án (B)
Tam giác đều ABC nội tiếp đường tròn tâm O bán kính R. Khi đó \(\widehat{BOC}\) có số đo bằng \(120^0\)
Hình vuông XYZT nội tiếp đường tròn tâm O bán kính R. Điểm M bất kì thuộc cung XT. \(\widehat{ZMT}\) có số đo bằng bao nhiêu ?
(A) \(22^030'\)
(B) \(45^0\)
(C) \(90^0\)
(D) Không tính được
Hãy chọn phương án đúng ?
Cho hình bs.9.
Khi đó số đo của \(\widehat{MFE}\) bằng bao nhiêu ?
(A) \(50^0\)
(B) \(80^0\)
(C) \(130^0\)
(D) Không tính được
Hãy chọn phương án đúng ?
Góc nội tiếp là góc :
(A) có đỉnh nẳm trên đường tròn
(B) có hai cạnh là hai dây của đường tròn
(C) có hai đỉnh là tâm đường tròn và có hai cạnh là hai bán kính
(D) có hai cạnh là hai dây của đường tròn đó và chỉ có một đầu mút chung
Hãy chọn phương án đúng ?
Cho tam giác ABC vuông tại A, ∠ABC = 60◦
, AB = a.
a) Xác định tâm O và tính bán kính đường tròn ngoại tiếp tam giác ABC.
b) Vẽ đường cao AH. Đường tròn đường kính BH cắt AB tại D và đường tròn đường
kính CH cắt AC tại E. Tứ giác ADHE là hình gì? Tính DE.
c) Chứng minh rằng AO⊥DE.
Một đường tròn là đường tròn nội tiếp nếu nó :
(A) đi qua các đỉnh của một tam giác
(B) tiếp xúc với các đường thẳng chứa các cạnh của một tam giác
(C) tiếp xúc với các cạnh của một tam giác
(D) nằm trong một tam giác
Hãy chọn phương án đúng ?
Cho ∆ABC nhọn (AB < AC) nội tiếp đường tròn (O) có hai đường cao BN và CD cắt nhau tại H. a) Chứng minh tứ giác BDNC nội tiếp, xác định tâm và bán kính đường tròn này. b) Vẽ đường kính AK của đường tròn (O). Chứng minh: BH = CK. c) Chứng minh: AK ⊥ DN
Cho đường tròn tâm O; bán kính R, đường kính AB. Lấy điểm M thuộc đường tròn khác hai điểm A,B . Tiếp tuyến tại M cắt hai tiếp tuyến tại A và B lần lượt tại C và D .
a. Vẽ hình và chứng minh tam giác COD vuông.
b. Cho AC= R CÂN 3 . Tính độ dài BD theo R
Cho (O) đường kính BC =2R. Gọi A là một điểm trên đường tròn này sao cho AB =R. Đường tròn (I) đường kính AC cắt BC tại D. a/ CM : Tứ giác ADOI nội tiếp. Xác định tâm đường tròn nội tiếp tứ giác ABOI theo R. b/ Tứ giác ABOI là hình gì ? Tính diện tích tứ giác ABOI theo R. c/ Một đường thẳng bất kì qua B cắt đường tròn đường kính AC tại M,N.CMR : BM.BN = R2
Một tứ giác là tứ giác nội tiếp nếu :
(A) có hai đỉnh cùng nhìn một cạnh dưới hai góc bằng nhau
(B) có 4 góc bằng nhau
(C) có 4 cạnh bằng nhau
(D) có các cạnh tiếp xúc với đường tròn
Hãy chọn phương án đúng ?