a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hbh
=>AB=DC
b: Xét ΔACD có
CM,AN là trung tuyến
CM cắt AN tại O
=>O là trọng tâm
=>OC=2OM
c: O là trọng tâm của ΔADC
=>DO đi qua trung điểm của AC
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hbh
=>AB=DC
b: Xét ΔACD có
CM,AN là trung tuyến
CM cắt AN tại O
=>O là trọng tâm
=>OC=2OM
c: O là trọng tâm của ΔADC
=>DO đi qua trung điểm của AC
cho tam giác ABC vuông tại A cóAB<AC, đường trung tuyến AM. trên tia đối của tia MA lấy điểm D sao cho MD=MA a) chứng minh tam giác MAC = tam giác MDB b) chứng minh BD vuông góc với AB vad AM=1/2BC
bài 4 cho tam giác ABC vuông tại A gọi M là trung điểm của BC trên tia đối của tia MA lấy điểm D sao cho MD=MA
a) chứng minh tam giác AMB=tam giác DMC
b) chứng minh AC=BD và AC//BD
c) chứng minh tam giác ABC =tam giác DCB tính số đo góc BDC
Cho tam giác ABO. Trên Tia đối của tia OA lấy điểm C sao cho OA=OC. Trên tia đối của tia OB lấy điểm D sao cho OB=OD.
a, CM: tam giác ABO = tam giác CDO
b, CM: AB//CD
c, lấy điểm M,N lần lượt là trung điểm của AB và CD. Chứng minh rằng O là trung điểm của MN.
Câu 15: (3 điểm). Cho tam giác ABC vuông tại A có AB = 8cm, AC = 6cm.
a, Tính BC
b, Trên cạnh AC lấy G sao cho AG = 2cm, trên tia đối của AB lấy điểm D sao cho AD = AB. Chứng minh rằng: \(\Delta BGC=\Delta DGC\)
c, Chứng minh DG đi qua trung điểm của cạnh BC
Cho tam giác ABC vuông tại A, đường trung tuyến AM. Trên tia đối của tia MA. Lấy điểm D sao cho MD = MA
a) Chứng minh :T/G AMC=T/G DMB
b) Chứng minh : T/G ABD vuông
c) Chứng minh : AD = BC
d) So sánh độ dài AM với BC , AB với BC ?
(3.0 điểm). Cho tam giác ABC vuông tại A, có AB = 3cm, BC = 5cm. a) Tính độ dài AC ? b) Gọi M là trung điểm của AC, Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh rằng: ABM = CDM. Từ đó suy ra AB = CD. c) Chứng minh 2.BM < AB + BC.
Cho tam giác ABC với AB = AC . lấy I là trung điểm của BC .
a) Chứng minh : ∆AIB = ∆AIC
b) Chứng minh tia AI là tia phân giác của góc BAC
c) Trên tia đối của tia BC lấy điểm M, trên tia đối tia CB lấy điểm N sao cho CN = BM. Chứng minh : AM = AN
Cho tam giác ABO. Trên Tia đối của tia OA lấy điểm C sao cho OA=OC. Trên tia đối của tia OB lấy điểm D sao cho OB=OD.
a, CM: tam giác ABO = tam giác CDO
b, CM: AB//CD
c, lấy điểm M,N lần lượt là trung điểm của AB và CD. Chứng minh rằng ba điểm M,O,N thẳng hàng.
Cho tam giác ABC (AB<AC, \(\widehat{ABC}\ne90^o\)); O là trung điểm của BC. Đường trung trực cảu cạnh BC cắt AC tại D. Trên tia BD lấy BE=AC ( D nằm giữa B và E)
a) Chứng minh rằng: AE//BC
b) Hai đường thẳng AB và EC cắt nhau ở S. Chứng minh rằng ba điểm S,D và O thẳng hàng.