Chương I - Hệ thức lượng trong tam giác vuông

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Thị Thùy Dương

Tam giác ABC có AB = 4,5 cm, AC = 6 cm, BC = 7,5 cm. Phân giác BD của góc B ( D thuộc AC). Tìm tỉ số lượng giác của góc ABD

Nguyễn Lê Phước Thịnh
15 tháng 8 2021 lúc 23:51

Xét ΔABC có \(BC^2=BA^2+AC^2\)

nên ΔBAC vuông tại A

Xét ΔBAC có 

BD là đường phân giác ứng với cạnh AC

nên \(\dfrac{AD}{AB}=\dfrac{DC}{BC}\)

hay \(\dfrac{AD}{4.5}=\dfrac{DC}{7.5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{4.5}=\dfrac{DC}{7.5}=\dfrac{AD+DC}{4.5+7.5}=\dfrac{1}{2}\)

Do đó: AD=2,25cm; DC=3,75cm

Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:

\(BD^2=AD^2+AB^2\)

\(\Leftrightarrow BD^2=4.5^2+2.25^2=25.3125\)

hay \(BD=\dfrac{9\sqrt{5}}{4}\left(cm\right)\)

Xét ΔABD vuông tại A có 

\(\sin\widehat{ABD}=\dfrac{AD}{BD}=\dfrac{\sqrt{5}}{5}\)

\(\cos\widehat{ABD}=\dfrac{AB}{BD}=\dfrac{2\sqrt{5}}{5}\)

\(\tan\widehat{ABD}=\dfrac{AD}{AB}=\dfrac{1}{2}\)

\(\cot\widehat{ABD}=2\)


Các câu hỏi tương tự
PTTD
Xem chi tiết
lekhoi
Xem chi tiết
Xem chi tiết
Long Lưu
Xem chi tiết
41 . Thanh Tuấn .9a3
Xem chi tiết
Đặng Tuyết Đoan
Xem chi tiết
Lee haoi Nhienn
Xem chi tiết
Thư Nguyễn
Xem chi tiết
Annie Nguyễn
Xem chi tiết