\(A=\dfrac{-3\sqrt{x}+1}{\sqrt{x}-3}\) và \(B=\dfrac{3\sqrt{x}-2}{x-5\sqrt{x}+6}-\dfrac{1}{\sqrt{x}-2}+\dfrac{3\sqrt{x}-2}{3-\sqrt{x}}\) \(\left(x\ge0;x\ne4;x\ne9\right)\). Với \(x>9\), so sánh \(\dfrac{A}{B}\) và 1.
1)so sánh 2 số sau M=\(\sqrt{18}-\sqrt{8}\) và N=\(\dfrac{5+\sqrt{5}}{\sqrt{5}+1}-\sqrt{6-2\sqrt{5}}\)
2)cho biểu thức A=\((\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{2x}{9-x}):(\dfrac{x-4}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}})\) với x>0,\(x\ne4\),\(x\ne9\)
Rút gọn biểu thức B:
B = \(\left(\dfrac{\sqrt{x}}{x-4}+\dfrac{1}{\sqrt{x}-2}\right):\dfrac{\sqrt{x}+2}{x-4}\) với \(x\ge0;x\ne4\)
Câu I.
Cho hai biểu thức \(A=\dfrac{2\sqrt{x}+1}{x^2}\) và \(B=\left(\dfrac{4x}{\sqrt{x}-1}-\dfrac{\sqrt{x}-2}{x-3\sqrt{x}+2}\right)\times\dfrac{\sqrt{x}-1}{x^2}\) với \(x\ge0,x\ne4.\)
1) Tính giá trị của A tại x = 9.
2) Rút gọn B.
3) Tìm x để B < A.
Câu II.
1) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:
Hai đội công nhân A và B cùng nhau làm một công việc thì hoàn thành trong 16 ngày. Nếu đội A làm trong 4 ngày rồi nghỉ, và tiếp theo đội B làm 3 ngày thì cả hai hoàn thành được \(\dfrac{11}{48}\) công việc. Hỏi nếu mỗi đội làm riêng thì làm xong công việc đó trong mấy ngày?
2) Một hình trụ có chiều cao bằng 2 lần bán kính đáy. Tính diện tích toàn phần của hình trụ đó biết thể tích của hình trụ là 128π (cm3).
Câu III.
1) Giải hệ phương trình: \(\left\{{}\begin{matrix}x-2y+\dfrac{1}{2x+3y}=2\\2x-4y+\dfrac{3}{2x+3y}=3\end{matrix}\right.\)
2) Cho phương trình \(x^2-\left(m-3\right)x+2m-11=0\) ( với m là tham số)
a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m.
b) Tìm m để phương trình có hai nghiệm phân biệt x1, x2 là độ dài hai cạnh của một tam giác vuông với cạnh huyền bằng 4.
Câu IV.
Cho tam giác nhọn ABC nội tiếp đường tròn tâm (O) và AC > BC. Gọi AD, BE, CF là ba đường cao, H là trực tâm của tam giác ABC. Gọi M, N lần lượt là trung điểm của AD, AC. Tia CO cắt DE tại P.
1) Chứng minh rằng tứ giác ABDE nội tiếp và △ABD đồng dạng với △CON.
2) Chứng minh rằng CP⊥DE và \(\widehat{FCP}=\widehat{ABC}-\widehat{CAB}.\)
3) Chứng minh rằng \(\widehat{MNF}=\widehat{FCP}\) và tứ giác FMPD nội tiếp.
Câu V.
Giải phương trình: \(\left(\sqrt{x+1}-\sqrt{x-2}\right).\left(\sqrt{4-x}+1\right)=2\).
Câu 1:
Cho hai biểu thức: \(A=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}\right)\) và \(B=\left(\dfrac{x+1}{2}-\sqrt{x}\right)\) với \(x\ge0,x\ne1.\)
a) Tính giá trị của biểu thức B khi x = 4;
b) Rút gọn biểu thức M = A.B;
c) Tìm x để \(M=\dfrac{\sqrt{x}}{6}.\)
Câu 2:
Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:
Hai lớp 9A; 9B của một trường Trung học cơ sở có 90 học sinh. Trong đợt quyên góp sách vở ủng hộ học sinh vùng lũ lụt, mỗi bạn lớp 9A ủng hộ 3 quyển, mỗi bạn lớp 9B ủng hộ 2 quyển. Tính số học sinh của mỗi lớp biết rằng cả hai lớp ủng hộ được 222 quyển sách và vở.
Câu 3:
1. Giải hệ phương trình \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{3}{y}=4\\\dfrac{5}{x}-\dfrac{2}{y}=3\end{matrix}\right.\)
2. Cho phương trình \(x^4-\left(m+2\right)x^2+m+1=0\) (1)
a) Giải phương trình (1) khi m = 2;
b) Tìm m để phương trình (1) có 4 nghiệm phân biệt.
Câu 4:
Cho đường tròn (O;R). Điểm M ở ngoài đường tròn sao cho OM = 2R. Kẻ hai tiếp tuyến MA, MB với đường tròn (A; B là các tiếp điểm). Nối OM cắt AB tại H. Hak HD ⊥ MA tại D. Điểm C thuộc cung nhỏ AB. Tiếp tuyến tại C của đường tròn (O;R) cắt MA, MB lần lượt tại E và F.
a) Chứng minh MAOB là tứ giác nội tiếp;
b) Chứng minh OH.OM = OA2;
c) Đường tròn đường kính MB cắt BD tại I, gọi K là trung điểm của OA. Chứng minh ba điểm M, I, K thẳng hàng.
Câu 5:
Tính diện tích xung quanh của hình nón có đường sinh bằng 10cm, đường kính đáy bằng 8cm.
Chúc các em ôn thi tốt!
Cho biểu thức:
P = \(\left(\dfrac{4\sqrt{x}}{2+\sqrt{x}}+\dfrac{8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\left(x>0,x\ne4,x\ne9\right)\)
a) Rút gọn P
b) Với \(x>9\), tìm GTNN của P
Bài 1: Cho A=\(\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}+2}-\dfrac{1}{2-\sqrt{x}}\) với \(x\ge0,x\ne4\)
a) Rút gọn và tìm các giá trị của x để A=2
b) Tìm x sao cho A<1
bài 2: Cho (P): \(y=x^2\) và (d): y=x+m-4. Tìm m để d cắt P tại 2 điểm phân biệt có hoành độ tương ứng là x1, x2 sao cho \(x1^2+x2^2=10\)
Bài 3: Cho nửa đường tròn tâm O đường kính AB. M là 1 điểm bất kỳ thuộc nửa đường tròn ( M khác A,B), gọi N là điểm trên cung AM ( N khác A, M và MN không song song AB). Đường thẳng AN cắt BM ở K, AM cắt BN ở I, KI cắt AB ở H.
a) Chứng minh KNIM nội tiếp và KI vuông góc AB.
b) CM KN.KA= KM.KB
c) Cm \(\widehat{MHN}=\widehat{NAM}+\widehat{NBM}\) và \(\widehat{MON}=\widehat{NHM}\)
d) Gọi giao của KH với nửa đường tròn là E, giả sử KH = 4cm, HI= 1cm. Tính KE?
(cần ý c thoi)
Cho các biểu thức sau:
A = \(\dfrac{\sqrt{x}+2}{\sqrt{x}}\) và B = \(\dfrac{x-3\sqrt{x}+4}{x-2\sqrt{x}}-\dfrac{1}{\sqrt{x}-2}\) với \(x>0;x\ne4\)
b) Chứng minh: B = \(\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
c) Cho P = A : B. Tìm số tự nhiên x để biểu thức P đạt giá trị lớn nhất
Câu 1.
Cho hai biểu thức \(A=\dfrac{\sqrt{x}+2}{1+\sqrt{x}}\) và \(B=\left(\dfrac{2\sqrt{x}}{x-\sqrt{x}-6}+\dfrac{\sqrt{x}}{\sqrt{x}-3}\right):\dfrac{\sqrt{x}}{\sqrt{x}-3}\) với \(x\ge0,x\ne9\).
1) Tính giá trị biểu thức A khi x = 36.
2) Rút gọn biểu thức B.
3) Với x ∈ \(\mathbb{Z}\), tìm giá trị lớn nhất của biểu thức P = A.B.
Câu 2.
Giải bài toán sau bằng cách lập hệ phương trình:
Theo kế hoạch, hai xí nghiệp A và B phải làm tổng cộng 720 dụng cụ cùng loại. Trên thực tế do cải tiến kĩ thuật, xí nghiệp A hoàn thành vượt mức 12%, còn xí nghiệp B hoàn thành vượt mức 10% so với kế hoạch. Do đó thực tế cả hai xí nghiệp làm được tổng cộng 800 dụng cụ. Tính số dụng cụ mỗi xí nghiệp phải làm theo kế hoạch?
Câu 3.
1) Giải phương trình: 3x4 - 2x2 - 40 = 0
2) Cho phương trình x2 + (m - 1)x - m2 - 2 = 0 (1), với m là tham số thực.
a) Chứng minh phương trình (1) luôn có hai nghiệm trái dấu x1, x2 với mọi giá trị của m.
b) Tìm m để biểu thức \(T=\left(\dfrac{x_1}{x_2}\right)^3+\left(\dfrac{x_2}{x_1}\right)^3\) đạt giá trị lớn nhất.
Câu 4.
Cho (O; R) và một điểm P nằm ngoài đường tròn. Kẻ hai tiếp tuyến PA, PB với đường tròn (A, B là tiếp điểm). Tia PO cắt đường tròn tại hai điểm K và I (K nằm giữa P và O) và cắt AB tại H. Gọi D là điểm đối xứng với B qua O, C là giao điểm của PD với đường tròn (O).
1) Chứng minh tứ giác BHCP nội tiếp.
2) Chứng minh PC.PD = PO.PH.
3) Đường tròn ngoại tiếp tam giác ACH cắt IC tại M. Tia AM cắt BI tại Q. Chứng minh tam giác AQH cân.
4) Giả sử \(\widehat{BDC}=45^o\). Tính diện tích tam giác PBD phần nằm bên ngoài đường tròn (O) theo R.
Câu 5.
Tìm m để phương trình ẩn x sau đây có ba nghiệm phân biệt. x3 - 2mx2 + (m2 + 1)x - m = 0.