Gọi là tập hợp gồm các giá trị thực của tham số m để phương trình \(x-2\sqrt{x+2}-m-3=0\) có 2 nghiệm phân biệt . Mệnh đề đúng là :
\(A,S=\left(-6;-5\right)\)
\(B,S=(-6;-5]\)
\(C,S=[-6;-5)\)
\(D,S=\left(-6;+\infty\right)\)
bài 1: Rút gọn:
a) A= \(sin^2x+sin^2x.cot^2x\)
b) B= \(\left(1-tan^2x\right).cot^2x+1-cot^2x\)
c) C= \(sin^2x.tanx+cos^2x.cotx+2sinx.cosx\)
d) D= \(\dfrac{1-cosx}{sin^2x}-\dfrac{1}{1+cosx}\)
e) E= \(cos^2\alpha.\left(sin^2\alpha+1\right)+sin^4\alpha\)
f) F= \(\dfrac{\sqrt{2}cos\alpha-2cos\left(\dfrac{\pi}{4}+2\right)}{-\sqrt{2}sin\alpha+2sin\left(\dfrac{\pi}{4}+2\right)}\)
g) G= \(\left(tana-tanb\right)cot\left(a-b\right)-tana.tanb\)
bài 2: cho các số dương a,b,c có a+b+c=3. Tìm giá trị nhỏ nhất của biểu thức
P= \(\dfrac{a\sqrt{a}}{\sqrt{2c+a+b}}+\dfrac{b\sqrt{b}}{\sqrt{2a+b+c}}+\dfrac{c\sqrt{c}}{\sqrt{2b+c+a}}\)
bài 3: cho a,b,c dương sao cho \(a^2+b^2+c^2=3\). Chứng minh rằng: \(\dfrac{a^3b^3}{c}+\dfrac{a^3c^3}{b}+\dfrac{b^3c^3}{a}\ge3abc\)
bài 4: cho các số thực dương a,b,c thỏa mãn a+b+c=3. Tìm giá trị nhỏ nhất cảu biểu thức :
P= \(\dfrac{1}{a}+\dfrac{1}{b}-c\)
bài 5: Cho a,b>0, \(3b+b\le1.\) Tìm giá trị nhỏ nhất của P= \(\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)
cho a,b và c là các số thực không âm thỏa mãn a+b+c=1
Chứng minh \(\dfrac{ab}{c+1}+\dfrac{bc}{a+1}+\dfrac{ca}{b+1}\le\dfrac{1}{4}\)
Cho bpt \(\left(m-2\right)x^2+2\left(4-3m\right)x+10m-11\le0\) . Gọi S là tập hợp các số nguyên dương m để bpt đúng với mọi x < -4
a) Vẽ trên cùng một hệ trục tọa độ đồ thị các hàm số sau :
\(y=f\left(x\right)=\left|x+3\right|-1\)
\(y=g\left(x\right)=\left|2x-m\right|\)
trong đó m là tham số
Xác định hoành độ các giao điểm của mỗi đồ thị với trục hoành
b) Tìm các giá trị của tham số m để bất phương trình sau nghiệm đúng với mọi giá trị của x
\(\left|2x-m\right|>\left|x+3\right|-1\)
xét dấu biểu thức:
\(cos\left(\alpha-\frac{3\pi}{8}\right)\)
không dùng máy tính cầm tay hãy tính giá trị của hàm số lượng giác của cung có số đo \(\frac{15\pi}{2}\) và \(-\frac{17\pi}{3}\)
Câu 1: Tìm m để biểu thức sau luôn âm: (m-4)x2+ (m+1)x + 2m-1
Câu 2: Tìm m để bất phương trình sau có nghiệm đúng với mọi x:
a/ \(\dfrac{3x^2-5x+4}{\left(m-4\right)x^2+\left(1+m\right)x+2m-1}>0\)
b/ \(-4< \dfrac{2x^2+mx-4}{-x^2+x-1}< 6\)
GIÚP MÌNH VỚI Ạ!!!
Câu 1: Tập xác định của hàm số y=3x2+2x+2 là
A.∅ B.R C.R\{2} D.[3;+∞)
Câu 2: Hệ phương trình sau có bao nhiêu nghiệm thực:\(\left\{{}\begin{matrix}x^2-y=y^2-x\\x^2-6y=7\end{matrix}\right.\)
A.2 B.3 C.4 D.5
Câu 3: Hệ phương trình \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=13\\\dfrac{3}{x}+\dfrac{2}{y}=12\end{matrix}\right.\)có nghiệm là:
A. x=\(\dfrac{1}{2}\);x=\(-\dfrac{1}{3}\) B.x=\(\dfrac{1}{2}\);y=\(\dfrac{1}{3}\) C.x=\(-\dfrac{1}{2}\);y=\(\dfrac{1}{3}\)
D. Hệ vô nghiệm
Câu 4: Cho hệ:\(\left\{{}\begin{matrix}\dfrac{3}{x-1}+\dfrac{4}{y-2}=1\\\dfrac{1}{x-1}-\dfrac{2}{y-2}=2\end{matrix}\right.\) nếu đặt a=\(\dfrac{1}{x-1}\);b=\(\dfrac{1}{y-2}\)(x≠1;y≠2) hệ trở thành
A.\(\left\{{}\begin{matrix}3a+4b=1\\a-2b=2\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}3a-4b=1\\a-2b=2\end{matrix}\right.\) C.\(\left\{{}\begin{matrix}3a+4b=1\\a+2b=2\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}3a-4b=1\\a+2b=2\end{matrix}\right.\)
Câu 5: Hệ phương trình sau có bao nhiêu nghiệm (x;y): \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=5\\\dfrac{4}{x}+\dfrac{6}{y}=6\end{matrix}\right.\)
A.0 B.1 C.2 D.Vô nghiệm
Câu 6: Tìm nghiệm (x;y) của hệ :\(\left\{{}\begin{matrix}x-y=1\\2x+y-z=2\\y+z=3\end{matrix}\right.\)
A.(\(\dfrac{7}{4};\dfrac{3}{4};\dfrac{9}{4}\)) B.(\(-\dfrac{7}{4};\dfrac{3}{4};-\dfrac{9}{4}\)) C.(\(\dfrac{7}{4};-\dfrac{3}{4};-\dfrac{9}{4}\)) D.(\(\dfrac{7}{4};-\dfrac{3}{4};-\dfrac{9}{4}\))
Câu 7: Hệ phương trình:\(\left\{{}\begin{matrix}x+y=2\\x+2z=3\\y+z=2\end{matrix}\right.\) có nghiệm là?
A.(1;1;1) B.(2;2;1) C.(-1;1;2) D.(1;2;1)
Câu 8: Cho tam giác ABC có a2+b2>c2 khi đó
A.Góc C>90o B. Góc C<90o C. Góc C=90o D. Không thể kết luận được gì về góc
C
Câu 9 : Tập nghiệm bất phương trinh x2<0
A.R B.∅ C.(-1;0) D.(-1;+∞)
Câu 10: Tập nghiệm của bất phương trình (x+1)2≥0
A.R B.∅ C.(-1;0) D.(-1;+∞)
Bài 1: Cho a,b dương sao cho a+b=1. Chứng minh rằng: \(\frac{a^2}{a+2b}+\frac{b^2}{a+2b}\ge\frac{1}{3}\)
bài 2: Cho x,y là các số thực dương thỏa mãn x+y=2019. tìm giá trị nhỏ nhất của biểu thức P= \(\frac{x}{\sqrt{2019-x}}+\frac{y}{\sqrt{2019-y}}\)
bài 3: Cho x>0, y>0 là những số thay đổi thỏa mãn \(\frac{2018}{x}+\frac{2019}{y}=1\). tìm giá trị nhỏ nhất của biểu thức P= x+y