Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Văn Xuân Nguyễn

\(\sqrt{x+y\left(x-1\right)}+\sqrt{x}=y+\sqrt{y}\\ \left(x-1\right)^2+y\sqrt{\left(x-\dfrac{1}{y}\right)^3}=2\)

Hung nguyen
28 tháng 9 2017 lúc 14:00

\(\left\{{}\begin{matrix}\sqrt{x+y\left(x-1\right)}+\sqrt{x}=y+\sqrt{y}\left(1\right)\\\left(x-1\right)^2+y\sqrt{\left(x-\dfrac{1}{y}\right)^3}=2\left(2\right)\end{matrix}\right.\)

\(\Rightarrow\left(1\right)\Leftrightarrow\sqrt{x+y\left(x-1\right)}-y-\sqrt{y}+\sqrt{x}=0\)

\(\Leftrightarrow\dfrac{x+xy-y-y^2}{\sqrt{x+y\left(x-1\right)}+y}+\dfrac{x-y}{\sqrt{x}+\sqrt{y}}=0\)

\(\Leftrightarrow\dfrac{\left(x-y\right)\left(y+1\right)}{\sqrt{x+y\left(x-1\right)}+y}+\dfrac{x-y}{\sqrt{x}+\sqrt{y}}=0\)

\(\Leftrightarrow\left(x-y\right)\left(\dfrac{y+1}{\sqrt{x+y\left(x-1\right)}+y}+\dfrac{1}{\sqrt{x}+\sqrt{y}}\right)=0\)

\(\Leftrightarrow x=y\)

Thế vô (2) ta được

\(\left(2\right)\Leftrightarrow\left(x-1\right)^2+x\sqrt{\left(x-\dfrac{1}{x}\right)^3}=2\)

\(\Leftrightarrow x\sqrt{\left(x-\dfrac{1}{x}\right)^3}=2-\left(x-1\right)^2\)

\(\Leftrightarrow x^6-x^5+x^4-2x^3-x^2-x-1=0\)

\(\Leftrightarrow\left(x^2+1\right)^2\left(x^2-x-1\right)=0\)

\(\Leftrightarrow x^2-x-1=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y=\dfrac{1+\sqrt{5}}{2}\\x=y=\dfrac{1-\sqrt{5}}{2}\left(l\right)\end{matrix}\right.\)

Nguyễn Huy Thắng
27 tháng 9 2017 lúc 23:24

từ pt 1 chuyển vế liên hợp nhé, tối rồi mệt nên ngại làm :>


Các câu hỏi tương tự
Kimian Hajan Ruventaren
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Hoàng
Xem chi tiết
Quách Thanh Nhã
Xem chi tiết
Gió
Xem chi tiết
Ichigo Hollow
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Legolas
Xem chi tiết
Ngô Thành Chung
Xem chi tiết