giải hệ phương trình
a) \(\left\{{}\begin{matrix}\sqrt{2x^2+2y^2}+\sqrt{\frac{4}{3}\left(x^2+xy+y^2\right)}=2\left(x+y\right)\\\sqrt{3x+1}+\sqrt{5x+4}=3xy-y+3\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\\\sqrt{x+2y+1}+2\sqrt[3]{12x+7y+8}=2xy+x+5\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}x^2+xy+x+3=0\\\left(x+1\right)^2+3\left(y+1\right)+2\left(xy-\sqrt{x^2y+2y}\right)=0\end{matrix}\right.\)
Giải hệ
a) \(\left\{{}\begin{matrix}x^2+y^2-2y-6+2\sqrt{2y+3}=0\\\left(x-y\right)\left(x^2+xy+y^2+3\right)=3\left(x^2+y^2\right)+2\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2y+2y+x=4xy\\\dfrac{1}{x^2}+\dfrac{1}{xy}+\dfrac{x}{y}=3\end{matrix}\right.\)
Giải hệ pt
a) \(\left\{{}\begin{matrix}x+\dfrac{y}{\sqrt{1+x^2}+x}+y^2=0\\\dfrac{x^2}{y^2}+2\sqrt{x^2+1}+y^2=3\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\sqrt{x^2+4}+\sqrt{y^2+2y-4}=4\\\sqrt{x^2+9}+y=5\end{matrix}\right.\)
Cho \(\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\). Chứng minh rằng \(\dfrac{1}{\sqrt{x+2y}}+\dfrac{1}{\sqrt{y+2z}}+\dfrac{1}{\sqrt{z+2x}}\le\sqrt{3}\).
giải hệ:
1,\(\left\{{}\begin{matrix}x^3+1=2y\\y^3+1=2x\end{matrix}\right.\)
2,\(\left\{{}\begin{matrix}2x+y=\dfrac{3}{x^2}\\2y+x=\dfrac{3}{y^2}\end{matrix}\right.\)
Tìm Max của biểu thức F(x;y) = x+2y với điều kiện \(\left\{{}\begin{matrix}0\le y\le4\\x\ge0\\x-y-1\le0\\x+2y-10\le0\end{matrix}\right.\)
Giải hệ bất phuơng trình:
\(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x}}+\dfrac{y}{x}=\dfrac{2\sqrt{x}}{y}+2\\y\left(\sqrt{x^2+1}-1\right)=\sqrt{3x^2+3}\end{matrix}\right.\)
Tìm Min của biểu thức F(x;y) = x-2y với điều kiện \(\left\{{}\begin{matrix}0\le y\le5\\x\ge0\\x+y-2\ge0\\x-y-2\le0\end{matrix}\right.\)
cho hệ phương trình:
\(\left\{{}\begin{matrix}x^2+y^2=5\\x^4-x^2y^2+y^4=13\end{matrix}\right.\)