\(ĐK:-2\le x\le4\\ PT\Leftrightarrow x+2=8-2x\\ \Leftrightarrow x=2\left(tm\right)\)
\(ĐK:-2\le x\le4\\ PT\Leftrightarrow x+2=8-2x\\ \Leftrightarrow x=2\left(tm\right)\)
Giải PT:
a) \(\sqrt{11+6\sqrt{2}}\) = \(\sqrt{2x^2-6x\sqrt{2}+9}\)
b) \(\sqrt{4x^2+4x\sqrt{7}+7}\) - \(\sqrt{8-2\sqrt{7}}\) = 0
c) \(\sqrt{x^2}\) = x
d) \(\sqrt{x^2-2x+1}\) = x-1
Giải pt:
a,\(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
b,\(\sqrt{x-3+4\sqrt{x+1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)
\(\sqrt[8]{1-x}+\sqrt[8]{x+1}+\sqrt[8]{x^2-1}=3\)
\(\sqrt{x-1}+x-3=\sqrt{2x^2-10x+16}\)
Giải phương trình vô tỉ
Giải các pt sau:
1) \(\sqrt{x+3}+2x\sqrt{x+1}=2x+\sqrt{x^2+4x+3}\)
2) \(2\sqrt{x+3}=9x^2-x-4\)
3) \(1+\dfrac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
4) \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)
5) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\)
Giải phương trình:(Nhớ tìm điều kiện)
a) \(\sqrt{2x-1}=\sqrt{5}\)
b)\(\sqrt{x-5}\) = 3
c)\(\sqrt{4x^2+4x+1}=6\)
d)\(\sqrt{\left(x-3\right)^2}=3-x\)
e)\(\sqrt{2x+5}=\sqrt{1-x}\)
f)\(\sqrt{x^2-x}=\sqrt{3-x}\)
g)\(\sqrt{2x^2-3}=\sqrt{4x-3}\)
h)\(\sqrt{2x-5}=\sqrt{x-3}\)
i)\(\sqrt{x^2-x+6}=\sqrt{x^2+3}\)
tìm x
\(\sqrt{9\left(x-1\right)}=21\)
\(\sqrt{4\left(x-1\right)^2}-6=0\)
\(\sqrt{\left(x-5\right)^2}=8\)
\(\sqrt{\left(2x-1\right)^2}=3\)
\(\sqrt{\left(2x+3\right)^2}=3\)
\(\sqrt{x^2-4x+4}=2x-3\)
bài 1. Cho a = 2; b = 8; c = \(\sqrt{5}\) - 2
a) Tính M \(\sqrt{a}.\sqrt{b}\)
b) Tính N \(\sqrt{c^2}-\dfrac{1}{c}\)
c) Tìm x biết rằng \(2x^2+c\left(2c-\sqrt{a}\right)-c\sqrt{2}=0\)
a) \(\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
b) \(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-3\sqrt{2x-5}}=2\sqrt{2}\)
tìm giá trị nhỏ nhất của
A=\(\sqrt{\left(x+2\right)^2}+\sqrt{\left(x+3\right)^2}=5\)
B=\(\sqrt[]{x+2\sqrt{x-1}+\sqrt{x-2\sqrt{x-1}}}\)
C=\(\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x+\sqrt{4x-1}}\)