\(=2+\sqrt{3}-3+\sqrt{3}=2\sqrt{3}-1\)
\(=2+\sqrt{3}-3+\sqrt{3}=2\sqrt{3}-1\)
Tính giá trị các biểu thức:
a.\(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right)\sqrt{3}\)
b.\(\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)
c.\(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\sqrt{8}\right)3\sqrt{6}\)
d.\(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)
M=\(\sqrt{9+4\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
N=\(\sqrt{7-4\sqrt{3}}-\sqrt{12-6\sqrt{3}}\)
1) \(\sqrt{7-2\sqrt{10}}\) - \(\sqrt{7+2\sqrt{10}}\)
2) \(\sqrt{4-2\sqrt{3}}\) + \(\sqrt{4+2\sqrt{3}}\)
3) \(\sqrt{6-4\sqrt{2}}\) + \(\sqrt{22-12\sqrt{2}}\)
rút gon bieu thức
\(\left(3\sqrt{2}+\sqrt{6}\right).\sqrt{6-3\sqrt{3}}\)
\(\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)
\(\sqrt{\dfrac{13}{4}+\sqrt{3}}-\sqrt{\dfrac{7}{4}-\sqrt{3}}\)
\(\sqrt{\dfrac{289+4\sqrt{72}}{16}}+\sqrt{\dfrac{129}{16}+\sqrt{2}}\)
\(\sqrt{11+6\sqrt{2}}-\sqrt{\sqrt{8}+3}\)
\(\sqrt{16-6\sqrt{7}}+\sqrt{10-2\sqrt{21}}\)
So sánh:
a) \(4\sqrt{7}\) và \(3\sqrt{13}\)
b) \(3\sqrt{12}\) và \(2\sqrt{16}\)
c) \(\dfrac{1}{4}\sqrt{84}\) và \(6\sqrt{\dfrac{1}{7}}\)
d) \(3\sqrt{12}\) và \(2\sqrt{16}\)
e) \(\dfrac{1}{2}\sqrt{\dfrac{17}{2}}\) và \(\dfrac{1}{3}\sqrt{19}\)
Tính:
a,\(\sqrt{19-6\sqrt{2}}\)
b,\(\sqrt{21+12\sqrt{3}}\)
c,\(\sqrt{57-40\sqrt{2}}\)
d,\(\sqrt{\left(5-2\sqrt{6}\right)\left(4-2\sqrt{3}\right)}\)
e,\(\sqrt{21+6\sqrt{6}}+\sqrt{21-6\sqrt{6}}\)
g,\(\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)
1:Tính A=\(\sqrt{4+\sqrt{7}}\)-\(\sqrt{4-\sqrt{7}}+\left(\sqrt{3}+1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)
Tính:
a) \(\left(2\sqrt{5}-\sqrt{7}\right).\left(2\sqrt{5}+\sqrt{7}\right)\)
b)\(\left(\sqrt{5-2\sqrt{6}}+\sqrt{2}\right).\sqrt{3}\)
c)\(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)
d)\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
e)\(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)
g)\(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{15}}\)
bài 77: thục hiên phép tính
c) \(\sqrt{6-4\sqrt{2}}+\sqrt{19-6\sqrt{2}}\) d)\(\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)