\(a.\sqrt{19-6\sqrt{2}}=\sqrt{18-2.3\sqrt{2}+1}=3\sqrt{2}-1\)
\(b.\sqrt{21+12\sqrt{3}}=\sqrt{12+2.2\sqrt{3}.3+9}=2\sqrt{3}+3\)
\(c.\sqrt{57-40\sqrt{2}}=\sqrt{32-2.4\sqrt{2}.5+25}=4\sqrt{2}-5\)
\(d.\sqrt{\left(5-2\sqrt{6}\right)\left(4-2\sqrt{3}\right)}=\sqrt{3-2\sqrt{3}.\sqrt{2}+2}.\sqrt{3-2\sqrt{3}+1}=\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-1\right)\) \(e.\sqrt{21+6\sqrt{6}}+\sqrt{21-6\sqrt{6}}=\sqrt{18+2.3\sqrt{2}.\sqrt{3}+3}+\sqrt{18-2.3\sqrt{2}.\sqrt{3}+3}=3\sqrt{2}+\sqrt{3}+3\sqrt{2}-\sqrt{3}=6\sqrt{2}\) \(g.\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}=\sqrt{4-2.2\sqrt{3}+3}-\sqrt{4+2.2\sqrt{3}+3}=2-\sqrt{3}-2-\sqrt{3}=-2\sqrt{3}\)
a)
=\(\sqrt{18-2.3\sqrt{2}.1+1}\)
\(=\sqrt{\left(3\sqrt{2}-1\right)^2}\)
\(=3\sqrt{2}-1\)
b)
=\(\sqrt{12+2.2\sqrt{3}.3+9}\)
=\(\sqrt{\left(2\sqrt{3}+3\right)^2}\)
=\(2\sqrt{3}+3\)
c)
=\(\sqrt{25-2.5.4\sqrt{2}+32}\)
=\(\sqrt{\left(5-4\sqrt{2}\right)^2}\)
=\(4\sqrt{2}-5\)
d)
\(=\sqrt{\left(3-2.\sqrt{3}.\sqrt{2}+2\right)\left(3-2\sqrt{3}+1\right)}\\ =\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2\left(\sqrt{3}-1\right)^2}\\ =\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-1\right)\\ =3-\sqrt{3}-\sqrt{6}+\sqrt{2}\)
e)
\(=\sqrt{18+2.3\sqrt{2}.\sqrt{3}+3}+\sqrt{18-2.3\sqrt{2}.\sqrt{3}+3}\\ =\sqrt{\left(3\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\\ =3\sqrt{2}+\sqrt{3}+3\sqrt{2}-\sqrt{3}\\ =6\sqrt{2}\)
g)
\(=\sqrt{4-2.2.\sqrt{3}+3}-\sqrt{4+2.2.\sqrt{3}+3}\\ =\sqrt{\left(2-\sqrt{3}\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\\ =2-\sqrt{3}-2-\sqrt{3}\\ =-2\sqrt{3}\)
b, \(\sqrt{21+12\sqrt{3}}=\sqrt{21+2.3.2.\sqrt{3}}=\sqrt{9+2.3.\sqrt{12}+12}\)
\(=\sqrt{\left(3+\sqrt{12}\right)^2}=3+\sqrt{12}\)
\(c,\sqrt{57-40\sqrt{2}}=\sqrt{57-2.4.5.\sqrt{2}}=\sqrt{25-2.5.\sqrt{32}}\)
\(=\sqrt{\left(5-\sqrt{32}\right)^2}=\left|5-\sqrt{32}\right|=5-\sqrt{32}\)
\(d,\sqrt{\left(5-2\sqrt{6}\right)\left(4-2\sqrt{3}\right)}=\sqrt{\left(3-2.\sqrt{2}.\sqrt{3}+2\right)\left(3-2\sqrt{3}+1\right)}\) \(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2\left(\sqrt{3}-1\right)^2}=\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-1\right)\)
\(e,A=\sqrt{21+6\sqrt{6}}+\sqrt{21-6\sqrt{6}}\)
Ta có :
\(21+6\sqrt{6}=\dfrac{42+12\sqrt{6}}{2}=\dfrac{36+2.6.\sqrt{6}+6}{2}=\left(\dfrac{6+\sqrt{6}}{\sqrt{2}}\right)^2\) Tương tự : \(21-6\sqrt{6}=\left(\dfrac{6-\sqrt{6}}{\sqrt{2}}\right)^2\)
Do đó :
\(A=\sqrt{\left(\dfrac{6+\sqrt{6}}{\sqrt{2}}\right)^2}+\sqrt{\left(\dfrac{6-\sqrt{6}}{\sqrt{2}}\right)^2}=\dfrac{6+\sqrt{6}}{\sqrt{2}}+\dfrac{6-\sqrt{6}}{\sqrt{2}}=\dfrac{6+\sqrt{6}+6-\sqrt{6}}{\sqrt{2}}\)\(=\dfrac{12}{\sqrt{2}}=\dfrac{12\sqrt{2}}{2}=6\sqrt{2}\)
Phần g làm tương tự như phần e nha bạn :>
Chúc bạn học tốt :>