Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Cam Anh

1:Tính A=\(\sqrt{4+\sqrt{7}}\)-\(\sqrt{4-\sqrt{7}}+\left(\sqrt{3}+1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)

Y
17 tháng 6 2019 lúc 16:55

\(A=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}+\left(\sqrt{3}+1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+4-\sqrt{2}}}}\)

\(=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}+\left(\sqrt{3}+1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{4+\sqrt{12}}}}\)

\(=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}+\left(\sqrt{3}+1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\left(\sqrt{3}+1\right)}}\)

\(=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}+\left(\sqrt{3}+1\right)\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)

\(=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}+\left(\sqrt{3}+1\right)\sqrt{6+2\left(\sqrt{3}-1\right)}\)

\(=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}+\left(\sqrt{3}+1\right)\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{\frac{4+\sqrt{4^2-7}}{2}}+\sqrt{\frac{4-\sqrt{4^2-7}}{2}}-\left(\sqrt{\frac{4+\sqrt{4^2-7}}{2}}-\sqrt{\frac{4-\sqrt{4^2-7}}{2}}\right)+\left(\sqrt{3}+1\right)^2\)

( áp dụng công thức căn phức tạp )

\(=2\sqrt{\frac{4-3}{2}}+4+2\sqrt{3}\)

\(=\sqrt{2}+4+2\sqrt{3}\)

Nguyễn Việt Lâm
17 tháng 6 2019 lúc 16:53

\(A=\sqrt{\frac{\left(\sqrt{7}+1\right)^2}{2}}-\sqrt{\frac{\left(\sqrt{7}-1\right)^2}{2}}+\left(\sqrt{3}+1\right)\sqrt{6+2\sqrt{6-2\sqrt{\sqrt{2}+2\sqrt{3}+\left(4-\sqrt{2}\right)}}}\)

\(=\frac{\sqrt{7}+1}{\sqrt{2}}-\frac{\sqrt{7}-1}{\sqrt{2}}+\left(\sqrt{3}+1\right)\sqrt{6+2\sqrt{6-2\sqrt{4+2\sqrt{3}}}}\)

\(=\sqrt{2}+\left(\sqrt{3}+1\right)\sqrt{6+2\sqrt{6-2\left(\sqrt{3}+1\right)}}\)

\(=\sqrt{2}+\left(\sqrt{3}+1\right)\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)

\(=\sqrt{2}+\left(\sqrt{3}+1\right)\sqrt{6+2\left(\sqrt{3}-1\right)}\)

\(=\sqrt{2}+\left(\sqrt{3}+1\right)\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{2}+\left(\sqrt{3}+1\right)^2=\sqrt{2}+4+2\sqrt{3}\)


Các câu hỏi tương tự
Hoàng Linh Chi
Xem chi tiết
Quynh Existn
Xem chi tiết
Qúy Công Tử
Xem chi tiết
Phương Thảo
Xem chi tiết
tam nguyen
Xem chi tiết
tam nguyen
Xem chi tiết
Quynh Existn
Xem chi tiết
Ngô Khánh Ngọc
Xem chi tiết
Vogsi Tú Anh
Xem chi tiết