\(\sqrt[3]{2x+1}>-5\)
\(\Leftrightarrow2x+1>\left(-5\right)^3\)
\(\Leftrightarrow2x+1>-125\)
\(\Leftrightarrow2x>-125-1\)
\(\Leftrightarrow2x>-126\)
\(\Leftrightarrow x>-\dfrac{126}{2}\)
\(\Leftrightarrow x>-63\)
\(\sqrt[3]{2x+1}>-5\)
\(\Leftrightarrow2x+1>\left(-5\right)^3\)
\(\Leftrightarrow2x+1>-125\)
\(\Leftrightarrow2x>-125-1\)
\(\Leftrightarrow2x>-126\)
\(\Leftrightarrow x>-\dfrac{126}{2}\)
\(\Leftrightarrow x>-63\)
Giải PT: \(\sqrt[3]{2x+4}=\sqrt[3]{2x-1}+\sqrt[3]{5}\)
giải pt sau
a)\(\sqrt[3]{2x+1}=3\)
b)\(\sqrt[3]{5+x}-x=5\)
c)\(\sqrt[3]{2-3x}=-2\)
d)\(\sqrt[3]{x-1}+1=x\)
Helpppp pls
Bài 1: Tính
A= \(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
B=\(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)
Bài 2: PTTNT:
a) \(\sqrt[3]{15}-\sqrt[3]{21}\)
b)\(\sqrt[3]{3}-3\)
c)\(\sqrt[3]{a^2x}+\sqrt[3]{b^2x}\)
Giải phương trình: \(\sqrt[3]{x-5}+\sqrt[3]{2x-1}-\sqrt[3]{3x+2}=-2\)
\(\sqrt{4x^2}-20x+25+2x=5\)
\(\sqrt{1-2x}+36x^2=5\)
\(\sqrt{4x^2-20x+25x+2x}=5\)
\(\sqrt{x-2}\sqrt{x-1}=\sqrt{x-1-1}\)
7.cho biểu thức:
\(P=\left(\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}+\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\right):\left(1+\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}-\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\) a)rút gon P
b)tính giá trị của P khi x =\(\dfrac{1}{2}\left(3+2\sqrt{2}\right)\)
Giải các phương trình sau:
a)\(\sqrt{1-2x}+\sqrt{1+2x}=2-x^2\)
b)\(\sqrt{2x-\frac{3}{x}}+\sqrt{\frac{6}{x}-2x}=1+\frac{3}{2x}\)
c)\(\sqrt[3]{x+1}=x^3-15x^2+75x-131\)
d)\(x^2-x-2\sqrt{1+16x}=2\)
e)\(7x^2+7x=\sqrt{\frac{4x+9}{28}}\)với x>0
\(\sqrt[3]{x+1}+\sqrt[3]{x+8}=\sqrt[3]{2x+27}\)
\(\sqrt[3]{x+1}+\sqrt[3]{x+8}=\sqrt[3]{2x+27}\)