Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hoàng Long

\(\sqrt{2}sinx+sin2x=\sqrt{3}cos2x-\sqrt{6}cosx\)

Hồng Phúc
20 tháng 8 2021 lúc 22:42

\(\sqrt{2}sinx+sin2x=\sqrt{3}cos2x-\sqrt{6}cosx\)

\(\Leftrightarrow\dfrac{\sqrt{2}}{2}sinx+\dfrac{1}{2}sin2x-\dfrac{\sqrt{3}}{2}cos2x+\dfrac{\sqrt{6}}{2}cosx=0\)

\(\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{3}\right)+sin\left(2x-\dfrac{\pi}{3}\right)=0\)

\(\Leftrightarrow\sqrt{2}cos\left(x-\dfrac{\pi}{6}\right)+2sin\left(x-\dfrac{\pi}{6}\right).cos\left(x-\dfrac{\pi}{6}\right)=0\)

\(\Leftrightarrow\sqrt{2}cos\left(x-\dfrac{\pi}{6}\right)\left[1+\sqrt{2}sin\left(x-\dfrac{\pi}{6}\right)\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos\left(x-\dfrac{\pi}{6}\right)=0\\sin\left(x-\dfrac{\pi}{6}\right)=-\dfrac{1}{\sqrt{2}}\end{matrix}\right.\)

Đến đấy thì dễ rồi.

Nguyễn Việt Lâm
20 tháng 8 2021 lúc 22:45

\(\Leftrightarrow\sqrt{2}\left(\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx\right)+\dfrac{1}{2}sin2x-\dfrac{\sqrt{3}}{2}cos2x=0\)

\(\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{3}\right)+sin\left(2x-\dfrac{\pi}{3}\right)=0\)

Đặt \(x+\dfrac{\pi}{3}=u\Rightarrow2x-\dfrac{\pi}{3}=2u-\pi\)

\(\Rightarrow\sqrt{2}sinu+sin\left(2u-\pi\right)=0\)

\(\Leftrightarrow\sqrt{2}sinu-sin2u=0\)

\(\Leftrightarrow sinu\left(\sqrt{2}-2cosu\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinu=0\\cosu=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\dfrac{\pi}{3}\right)=0\\cos\left(x+\dfrac{\pi}{3}\right)=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow...\)


Các câu hỏi tương tự
Nguyễn Sinh Hùng
Xem chi tiết
Tô Mì
Xem chi tiết
tran duc huy
Xem chi tiết
Mai Thị Khánh Huyền
Xem chi tiết
tran duc huy
Xem chi tiết
nguyen hoang an
Xem chi tiết
Julian Edward
Xem chi tiết
Kinder
Xem chi tiết
Julian Edward
Xem chi tiết