So sánh (không dùng bảng số hay máy tính bỏ túi)
\(\sqrt{2003}+\sqrt{2005}\) và \(2\sqrt{2004}\)
So sánh (không dùng bảng số hay máy tính bỏ túi )
a) \(\sqrt{2}+\sqrt{3}\) và \(\sqrt{10}\)
b) \(\sqrt{3}+2\) và \(\sqrt{2}+\sqrt{6}\)
c) \(16\) và \(\sqrt{15}.\sqrt{17}\)
d) \(8\) và \(\sqrt{15}+\sqrt{17}\)
Không dùng máy tính hoặc bảng số, chứng minh rằng:
√3 + 2 < √2 (√3 + 1)
So sánh M = \(\sqrt{2+\sqrt{5}}\) và N = \(\dfrac{\sqrt{5}+1}{\sqrt{3}}\)
So sánh:
a. 4 và \(2\sqrt{3};\) b. \(-\sqrt{5}\) và -2.
So sánh:
a) \(\sqrt{7}\) + \(\sqrt{3}\) và \(\sqrt{5}\) + \(\sqrt{6}\)
b) \(\sqrt{4-3\sqrt{3}}\) và \(\sqrt{3}\) - 1
Cho A = \(\sqrt{12}-\sqrt{11}\) , B = \(\sqrt{14}-\sqrt{13}\) . so sánh A và B
thực hiện phép tính :
(2\(\sqrt{6}\) - 4\(\sqrt{3}\) + 5\(\sqrt{2}\) - \(\dfrac{1}{4}\)\(\sqrt{8}\)) . 3\(\sqrt{6}\)
Tính :
a) A= \(\sqrt{\sqrt{3}+\sqrt{2}}.\sqrt{\sqrt{3}-\sqrt{2}}\)
b) B=\(\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}\)
c) C= \(3-\sqrt{3-\sqrt{5}}\)