Lời giải:
Đặt \(\sqrt{2019}=a; \sqrt{2020}=b\) $(a,b>0)$
Ta có:
\(A-B=\frac{a^2}{b}+\frac{b^2}{a}-a-b\)
\(=(\frac{a^2}{b}-b)+(\frac{b^2}{a}-a)=\frac{a^2-b^2}{b}-\frac{a^2-b^2}{a}=(a^2-b^2)(\frac{1}{b}-\frac{1}{a})=\frac{(a-b)^2(a+b)}{ab}>0\) với mọi $a\neq b; a,b>0$
Do đó A>B$