giải phương trình : \(\frac{\sqrt{x-2018}-1}{x-2018}+\frac{\sqrt{y-2019}-1}{y-2019}+\frac{\sqrt{z-2029}-1}{z-2020}=\frac{3}{4}\)
tìm nghiệm nguyên của pt : \(2x^2+4x=19-3y^2\)
cm với mọi số tự nhiên n thì : \(a_n=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\) là số chính phương
Cho \(2018x^3=2019y^3=2020z^3\) và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=8\)
Tính giá trị biểu thức: \(B=\frac{\sqrt[3]{2018x^2+2019y^2+2020z^2}}{\sqrt[3]{2018}+\sqrt[3]{2019}+\sqrt[3]{2020}}\)
Rút gọn biểu thức S = \(\frac{2019}{2\sqrt{1}+1\sqrt{2}}+\frac{2019}{3\sqrt{2}+2\sqrt{3}}+\frac{2019}{4\sqrt{3}+3\sqrt{4}}+...+\frac{2019}{2019\sqrt{2018}+2018\sqrt{2019}}\)
Mk chỉ cần kết quả thôi , cảm ơn nhiều ạ
I : Rút gọn
\(A=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2019\sqrt{2020}+2020\sqrt{2019}}\)
help me !!!
Tính \(C=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2019\sqrt{2018}+2018\sqrt{2019}}\)
cho x,y,z > 0 và x+y+z=2020 tìm GTLN của : \(\sqrt{x+\frac{yz}{2020}}+\sqrt{y+\frac{xz}{2020}}+\sqrt{z+\frac{xy}{2020}}\)
giải phương trình sau:
a) \(5+x+2\sqrt{\left(4+x\right)\left(2x-2\right)}=4\left(\sqrt{4-x}+\sqrt{2x-2}\right)\)
b) \(\sqrt{x-2}+\sqrt{y+2019}+\sqrt{z-2020}=\frac{1}{2}xyz\)
1)Cho tam giác ABC có AB=\(2\sqrt{2}\);AC=\(2\sqrt{3}\);và góc BAC =60 độ có diện tích bằng ?
2)Cho S=\(\frac{2020}{2\sqrt{1}+1\sqrt{2}}+\frac{2020}{3\sqrt{2}+2\sqrt{3}}+\frac{2020}{4\sqrt{3}+3\sqrt{4}}+...+\frac{2020}{2020\sqrt{2019}+2019\sqrt{2020}}\)
Tính S=?
=>giúp e vs các ac
Tim GTLN: P= \(\frac{\sqrt{x-2019}}{2019x}+\frac{\sqrt{y-2020}}{2020y}\)