Ta có:
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{2^{50}}\)
\(\Rightarrow2A=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{2^{50}}\right)\)
\(\Rightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{2^{49}}\)
\(\Rightarrow2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+....+\dfrac{1}{2^{49}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{2^{50}}\right)\)
\(\Rightarrow A=1-\dfrac{1}{50}< 1\)
Vậy A < 1