a: \(\left(\sqrt{3}+\sqrt{5}\right)^2=8+2\sqrt{15}\)
\(\left(\sqrt{17}\right)^2=8+9\)
mà 2 căn 15<9
nên căn 3+căn 5<căn 17
c: \(\left(\sqrt{2004}+\sqrt{2006}\right)^2=2010+2\cdot\sqrt{2004\cdot2006}\)
\(\left(2\sqrt{2005}\right)^2=2010+2\cdot\sqrt{2005^2}\)
mà \(2004\cdot2006< 2005^2\)
nên căn 2004+căn 2006<căn 2005x2