Có: \(71^{50}=\left(71^2\right)^{25};37^{75}=\left(37^3\right)^{25}\)
Lại có: \(71^2< 72^2=\left(2\cdot36\right)^2=2^2\cdot36^2=4\cdot36^2< 36\cdot36^2=36^3< 37^3\)
Vậy \(71^{50}< 37^{75}\)
Ta có: \(71^{50}=\left(71^2\right)^{25}=5041^{25}\)
\(37^{75}=\left(37^3\right)^{25}=50653^{25}\)
mà \(5041^{25}< 50653^{25}\)
nên \(71^{50}< 37^{75}\)