a/
\(sinx-sin3x-2sin2x=2\sqrt{2}\)
\(\Leftrightarrow-2cos2x.sinx-2sin2x=2\sqrt{2}\)
\(\Leftrightarrow cos2x.sinx+sin2x=-\sqrt{2}\)
Ta có:
\(VT^2=\left(cos2x.sinx+sin2x.1\right)^2\le\left(cos^22x+sin^22x\right)\left(sin^2x+1\right)=sin^2x+1\le2\)
\(\Rightarrow-\sqrt{2}\le VT\le\sqrt{2}\Rightarrow VT\ge-\sqrt{2}\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}cos2x.1=sin2x.sinx\\sin^2x=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2cos^2x-1=2sin^2x.cosx\\cosx=0\end{matrix}\right.\) (ko tồn tại x thỏa mãn)
Vậy pt đã cho vô nghiệm (thay cosx=0 lên pt trên được -1=0 vô lý)
ĐKXĐ:
\(\left(tanx+cotx\right)^2=\left(tanx-cotx\right)^2+4tanx.cotx\)
\(\Leftrightarrow\left(tanx+cotx\right)^2=\left(tanx-cotx\right)^2+4\ge4\)
\(\Rightarrow\left[{}\begin{matrix}tanx+cotx\ge2\\tanx+cotx\le-2\end{matrix}\right.\)
Mà \(-1\le sin\left(x+\frac{\pi}{4}\right)\le1\Rightarrow-2\le sin\left(x+\frac{\pi}{4}\right)\le2\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}tanx+cotx=2\\sin\left(x+\frac{\pi}{4}\right)=1\end{matrix}\right.\\\left\{{}\begin{matrix}tanx+cotx=-2\\sin\left(x+\frac{\pi}{4}\right)=-1\end{matrix}\right.\end{matrix}\right.\)
Đến đây chắc đơn giản rồi, bạn tự giải được đúng ko