`a)Đặt \, A=sqrt{21+3sqrt{48}}-sqrt{21-3sqrt{48}}`
Vì `21+3sqrt{48}>21-3sqrt{48}`
`=>sqrt{21+3sqrt{48}}-sqrt{21-3sqrt{48}}>0`
Hay `A>0`
`<=>A^2=21+3sqrt{48}+21-3sqrt{48}-2sqrt{21^2-9.48}`
`<=>A^2=42-2sqrt{9}=32-2.3=26`
`<=>A=sqrt{26}(do \ A>0)`
b)Chắc đề là như này:
`sqrt{7-2sqrt{10}}-sqrt{7+2sqrt{10}}`
`=sqrt{5-2sqrt{5}.sqrt2+2}-sqrt{5+2sqrt{5}.sqrt2+2}`
`=sqrt{(sqrt5-sqrt2)^2}-sqrt{(sqrt5+sqrt2)^2}`
`=sqrt5-sqrt2-sqrt5-sqrt2=-2sqrt2`
a) Ta có: \(\sqrt{21+3\sqrt{48}}-\sqrt{21-3\sqrt{48}}\)
\(=\sqrt{12+2\cdot2\sqrt{3}\cdot3+9}-\sqrt{12-2\cdot2\sqrt{3}\cdot3+9}\)
\(=2\sqrt{3}+3-2\sqrt{3}+3\)
=6
b) Ta có: \(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)
\(=\sqrt{5}-\sqrt{2}-\sqrt{5}-\sqrt{2}\)
\(=2\sqrt{2}\)