Mk làm luôn nhé , không chép lại đề đâu
Q = \(\dfrac{x^6\left(x^4-x^2+1\right)-x^3\left(x^4-x^2+1\right)+x^4-x^2+1}{x^{18}\left(x^{12}+x^6+1\right)+x^{12}+x^6+1}\)
\(Q=\dfrac{\left(x^4-x^2+1\right)\left(x^6-x^3+1\right)}{\left(x^{12}+x^6+1\right)\left(x^{18}+1\right)}\)
\(Q=\dfrac{\left(x^4-x^2+1\right)\left(x^6-x^3+1\right)}{\left(x^{12}+x^6+1\right)\left[\left(x^6\right)^3+1\right]}\)
\(Q=\dfrac{\left(x^4-x^2+1\right)\left(x^6-x^3+1\right)}{\left(x^{12}+2x^6+1-x^6\right)\left[\left(x^2\right)^3+1\right]\left(x^{12}-x^6+1\right)}\)
\(Q=\dfrac{\left(x^4-x^2+1\right)\left(x^6-x^3+1\right)}{\left[\left(x^6+1\right)-\left(x^3\right)^2\right]\left(x^2+1\right)\left(x^4-x^2+1\right)\left(x^{12}-x^6+1\right)}\)
\(Q=\dfrac{\left(x^6-x^3+1\right)}{\left(x^6-x^3+1\right)\left(x^6+1+x^3\right)\left(x^2+1\right)\left(x^{12}-x^6+1\right)}\)
\(Q=\dfrac{1}{\left(x^6+1+x^3\right)\left(x^2+1\right)\left(x^{12}-x^6+1\right)}\)