Cho biểu thức: \(P=\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}-\frac{5\sqrt{x}+2}{x-4}\left(x\ge0,x\ne4\right)\)
a, Rút gọn biểu thức P.
b, Tìm x để P = 2.
1) a) Rut gon \(A=\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\left(x\ge0\right),x\ne4\)
Cho biểu thức : \(P=\frac{x+3}{\sqrt{x}-2}:\left(\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\right)\) với x > 0 ; \(x\ne4\)
a, Rút gọn biểu thức P
b, Tìm GTNN của biểu thức P
Cho biểu thức : \(P=\frac{x+3}{\sqrt{x}-2}:\left(\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\right)\) với \(x>0;x\ne4\)
a, Rút gọn biểu thức P
b, Tìm GTNN của biểu thức P
với \(x\ge0;x\ne1\) cho biểu thức \(Q=\left(\frac{2\sqrt{x}+x}{x\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}\right):\left(1-\frac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)
1/ rút gọn biểu thức Q
2/ tìm x để \(\frac{1}{Q}=4\sqrt{x}-4\)
Rút gọn
\(M=\left(\frac{x+2}{\sqrt{x^3+1}}-\frac{1}{x-\sqrt{x}+1}\right):\frac{1}{\sqrt{x}-2}\) với \(x\ge0,x\ne4\)
Rút gọn các biểu thức sau:
a) A=\(\frac{1}{\sqrt{3}+1}+\frac{1}{\sqrt{3}-1}+\frac{2\sqrt{2}-\sqrt{6}}{\sqrt{2}}\)
b)B=\(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}}{x-2\sqrt{x}+1}\left(x\ge0;x\ne1\right)\)
Cho biểu thức: \(B=\left(1-\frac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\) với \(x\ge0;x\ne4;9\)
a, Rút gọn biểu thức B
b, Tìm x để B < 0
c, Tìm GTNN của B
Cho biểu thức: \(A=\left(\frac{1}{\sqrt{x}+2}+\frac{1}{\sqrt{x}-2}\right).\frac{\sqrt{x}-2}{\sqrt{x}}\) ( với x > 0, \(x\ne4\) )
a, Rút gọn A
b, Tìm giá trị của x để A > 0,5