\(=\sqrt{\frac{14-6\sqrt{5}}{4}}-\sqrt{\frac{14+6\sqrt{5}}{4}}=\sqrt{\frac{\left(3-\sqrt{5}\right)^2}{4}}-\sqrt{\frac{\left(3+\sqrt{5}\right)^2}{4}}\)
\(=\frac{3-\sqrt{5}}{2}-\frac{3+\sqrt{5}}{2}=-\sqrt{5}\)
\(=\sqrt{\frac{14-6\sqrt{5}}{4}}-\sqrt{\frac{14+6\sqrt{5}}{4}}=\sqrt{\frac{\left(3-\sqrt{5}\right)^2}{4}}-\sqrt{\frac{\left(3+\sqrt{5}\right)^2}{4}}\)
\(=\frac{3-\sqrt{5}}{2}-\frac{3+\sqrt{5}}{2}=-\sqrt{5}\)
a) Rút gọn biểu thức:\(\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{\sqrt{5}-5}{1-\sqrt{5}}\right):\frac{1}{\sqrt{2}-\sqrt{5}}\)
b) Tìm giá trị nhỏ nhất của biểu thức B=\(x^2-x\sqrt{3}+1\)
rút gọn biểu thức
a) \(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\)
b) \(\frac{3}{2+\sqrt{3}}+\frac{13}{4-\sqrt{3}}+\frac{6}{\sqrt{3}}\)
c) \(\left(\frac{\sqrt{14}-\sqrt{7}}{\sqrt{2}-1}+\frac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)
Rút gọn các biểu thức
a) \(\sqrt{\left(2-\sqrt{3}\right)}^2\) + \(\sqrt{4-2\sqrt{3}}\)
b) \(\sqrt{15-6\sqrt{6}}\) + \(\sqrt{33-12\sqrt{6}}\)
c) \(\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}\) + \(\sqrt{\frac{3+\sqrt{5}}{3-\sqrt{5}}}\)
d)\(\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}\) + \(\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}\)
1. Rút gọn biểu thức: A= \(\left(\sqrt{7-4\sqrt{3}}-\frac{\sqrt{15}-3}{\sqrt{3}}\right).\left(2+\sqrt{5}\right)\)
2. Cho biểu thức: M= \(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}-1}{2}\)( với x \(\ge\)0, x\(\ne\)1)
a, Rút gọn biểu thức M
b, Tìm x để M=2
3.
a, Rút gọn biểu thức: \(\frac{4}{\sqrt{5}-\sqrt{3}}-\sqrt{20}-\sqrt{27}\)
b, Với a > 1, cho biểu thức P= \(\left(\frac{2}{\sqrt{a+1}}+\sqrt{a-1}\right):\left(\frac{2}{\sqrt{a^2-1}}+1\right)\)
Rút gọn biểu thức P, tìm giá trị của a để P = 2
Cho biểu thức:\(Q=\frac{2}{\:2+\sqrt{x}}+\frac{1}{2-\sqrt{x}}+\frac{2\sqrt{x}}{x-4}\)
a) Rút gọn biểu thức Q.
b) Tìm x để \(Q=\frac{6}{5}\)
bài 1: rút gọn biểu thức
a) \(\sqrt{48}-6\sqrt{\frac{1}{3}}+\frac{\sqrt{3}-3}{\sqrt{3}}\)
b)\(\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{5}{\sqrt{5}}\right):\left(\frac{1}{\sqrt{5}-\sqrt{2}}\right)\)
c) \(\sqrt{7-4\sqrt{3}}+\sqrt{\left(1+\sqrt{3}\right)^2}\)
d) \(5\sqrt{\frac{1}{5}}+\frac{1}{3}\sqrt{45}+\frac{5-\sqrt{5}}{\sqrt{5}}\)
bài 2: giải phương trình
c)\(\sqrt{4x+4}-\sqrt{9x+9}-8\sqrt{\frac{x+1}{16}}=5\)
bài 3 a)tìm điều kiện để căn thức bậc 2 có nghĩa \(\sqrt{\frac{-5}{2x+1}}\)
b) \(\sqrt[3]{64}+\sqrt[3]{-27}-\sqrt[3]{-4}.\sqrt[3]{2}\)
bài 4 cho biểu thức Q= \(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}\) với x>0 và x khác 1
a) rút gọn Q b) tính giá trị của Q khi x= 9
bài 5 :cho biểu thức P= \(\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)
a) tìm điều kiện của x để biểu thức P xác định
b) rút gọn P
c) tìm giá trị của x để P< 0
1. Cho biểu thức: A=\(\left(\frac{x+\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-x}{\sqrt{x}-1}\right)\left(1+\frac{1}{\sqrt{x}}\right)\)
a) Rút gọn biểu thức A
b) Tìm giá trị của x để A= 4
2. Rút gọn các biểu thức sau:
a) A= \(3\sqrt{12}-4\sqrt{3}+5\sqrt{27}\)
b) B= \(\frac{1}{\sqrt{7}+4\sqrt{3}}\)
3. Tính giá trị biểu thức D=\(\sqrt[3]{70-\sqrt{4901}}+\sqrt[3]{70+\sqrt{4901}}\)
a, \(\sqrt{\frac{1}{60}}\) b, \(\frac{3-\sqrt{5}}{\sqrt{2}}\)
c, \(\frac{1}{2-\sqrt{3}}\)
d, \(\frac{3}{\sqrt{2}+\sqrt{5}}\)
e, \(\frac{\sqrt{7}-\sqrt{3}}{\sqrt{7}+\sqrt{3}}\)
Khử mẫu của biểu thức có chữa căn ở mẫu
Rút gọn các biểu thức:
a) A=\(\frac{30}{\sqrt{6}+1}+\frac{2}{\sqrt{6}-2}-\frac{6}{3-\sqrt{6}}\)
b) B=\(\sqrt{17-6\sqrt{2}+\sqrt{9+4\sqrt{2}}}\)
c) C=\(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
d) D=\(\sqrt{a+1-2\sqrt{a}}-\sqrt{a+16-8\sqrt{a}}\) với \(1\le a\le16\)
e) E=\(\sqrt{a-1+2\sqrt{a-2}}+\sqrt{a-1-2\sqrt{a-2}}\)
f) F=\(\sqrt[3]{10+6\sqrt{3}}-\sqrt{3}\)
g) G=\(\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}\)