Rút gọn biểu thức:
\(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}+28=3\sqrt{2x}-5\sqrt{4.2x}+7\sqrt{9.2x}+28\)
\(=3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}+28\)
\(=24\sqrt{2x}-10\sqrt{2x}+28\)
\(=14\sqrt{2x}+28\)
Rút gọn biểu thức:
\(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}+28=3\sqrt{2x}-5\sqrt{4.2x}+7\sqrt{9.2x}+28\)
\(=3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}+28\)
\(=24\sqrt{2x}-10\sqrt{2x}+28\)
\(=14\sqrt{2x}+28\)
Bài 1: Thực hiện phép tính
a) \(\dfrac{1}{2}\sqrt{48}-\sqrt{32}-\sqrt{75}\)\(-\dfrac{1}{5}\sqrt{50}\)
b) \(\dfrac{3+\sqrt{3}}{3-\sqrt{3}}+\dfrac{3-\sqrt{3}}{3+\sqrt{3}}\)
c) \(4\sqrt{\dfrac{3}{2}}-\dfrac{5}{2}\sqrt{24}+\dfrac{1}{2}\sqrt{50}\)
d) \(\left(2\sqrt{5}+5\sqrt{2}\right).\sqrt{5}-\sqrt{250}\)
Bài 2: Rút gọn biểu thức sau
\(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) với \(a\ge0\)
Bài 3: Cho biểu thức sau
A=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-a}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{4-x}{2\sqrt{x}}\)với \(x>0\)và \(x\ne4\)
a) Rút gọn A b) Tìm x để A=-3
Bài 4: Rút gọn biểu thức sau
A=\(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{1+\sqrt{x}}\right):\dfrac{1}{x-1}\) với \(x\ge0\) và \(x\ne1\)
Bài 5: Cho biểu thức
C= \(\left(\dfrac{2+\sqrt{a}}{2-\sqrt{a}}-\dfrac{2-\sqrt{a}}{2+\sqrt{a}}-\dfrac{4a}{a-4}\right):\left(\dfrac{2}{2-\sqrt{a}}-\dfrac{\sqrt{a}+3}{2\sqrt{a}-a}\right)\)
a) Rút gọn C b) Timg giá trị của a để C>0 c) Tìm giá trị của a để C=-1
Bài 6: Giải phương trình
a) \(2\sqrt{3}-\sqrt{4+x^2}=0\\\)
b) \(\sqrt{16x+16}-\sqrt{9x+9}=1\)
c) \(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18x}=0\)
d) \(\sqrt{4\left(x+2\right)^2}=8\)
\(\dfrac{x\sqrt{x}+x}{\sqrt{x}+1}-\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}với..x\ge0,x\ne1\)
a) rút gọn biểu thức A b) tìm x để A có gt =4
c) tìm x để A dương
Cho biểu thức \(P=\left(\dfrac{\sqrt{x}}{x\sqrt{x}-1}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\); \(x\ge0,x\ne1\).
a) Rút gọn P.
b) Tìm x để \(P=\sqrt{x}\).
c) Với x > 1, hãy so sánh P và \(\sqrt{P}\).
Cho biểu thức M= \(\left(\dfrac{a\sqrt{a}-1}{\sqrt{a}-1}+\sqrt{a}\right).\dfrac{1}{\sqrt{a}+1}\)Với ( \(a\ge0,a\ne1\))a) Rút gọn biểu thức Mb) Tính giá trị của M tại a = 2020-2\(\sqrt{2019}\)
Cho biểu thức :
\(B=\left(\dfrac{2x+1}{\sqrt{x^3}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+\sqrt{x^3}}{1+\sqrt{x}}-\sqrt{x}\right)\) với \(x\ge0;x\ne1\)
a) Rút gọn B
b) Tìm \(x\) để B = 3
Cho biểu thức \(P=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{7\sqrt{x}+3}{9-3}\) với x > 0, x ≠ 9
a) Rút gọn P.
b) Tìm x để P = 2
Cho biểu thức \(A=\left(\dfrac{2}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{4}{\sqrt{x}+1}\right)\)
a/ Rút gọn A với \(x\ge0,x\ne1\)
b/ Tìm x để A < 0
c/ Tìm số nguyên x để A có giá trị nguyên
rút gọn biểu thức sau: \(\sqrt{5+\sqrt{21}}-\sqrt{5-\sqrt{21}}\)
a) Rút gọn biểu thức:\(\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{\sqrt{5}-5}{1-\sqrt{5}}\right):\frac{1}{\sqrt{2}-\sqrt{5}}\)
b) Tìm giá trị nhỏ nhất của biểu thức B=\(x^2-x\sqrt{3}+1\)