Rút gọn biểu thức:
\(a,\left(\frac{\sqrt{a}+2}{a+2\sqrt{a}+1}-\frac{\sqrt{a}-2}{a-1}\right)\frac{\sqrt{a}+1}{\sqrt{a}}\)
\(b,\sqrt{\frac{a+\sqrt{a^2-b}}{2}}+\sqrt{\frac{a-\sqrt{a^2-b}}{2}}\)
Rút gọn biểu thức:
\(a,\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)
\(b,\frac{2}{\sqrt{ab}}:\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)
bài 1: Cho biểu thức \(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\)
a, rút gọn biểu thức A
b, tìm a để A=1
bài 2 : cho biểu thức \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)
a, tìm điều kiện của x để B có nghĩa
b, rút gọn
c, tính giá trị biểu thức B tại x =\(3+2\sqrt{3}\)
bài 3 cho biểu thức \(B=\left(\frac{1}{\sqrt{y}+1}-\frac{3\sqrt{y}}{\sqrt{y}-1}+3\right).\frac{\sqrt{y}+1}{\sqrt{y}+2}\)
a, tìm y để B có nghĩa và rút gọn B
b, tính giá trị của biểu thức B biết y = \(3+2\sqrt{2}\)
GIÚP MÌNH TỐI MAI ĐI HC RỒI
Cho a>0, b>0, a≠b, rút gọn biểu thức:
A = \(\left(\frac{\sqrt{a}}{\sqrt{ab}-b}+\frac{\sqrt{b}}{\sqrt{ab}-a}\right):\frac{\sqrt{a}+\sqrt{b}}{a\sqrt{b}-b\sqrt{a}}\)
Cho biểu thức:
\(B=\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{1-\sqrt{a}}{\sqrt{a}+1}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}}{\sqrt{a}+1}+\frac{\sqrt{a}}{1-a}\right)\)
a, Rút gọn B
b, Tính B khi a = 9 - \(4\sqrt{5}\)
c, So sánh B với 2
B=\(\frac{\sqrt{x}+2}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3\sqrt{x}-1}{x-4\sqrt{x}+3}\) ; A=\(\frac{\sqrt{x}+3}{x-1}\)
a,Rút gọn biểu thức B
b,Tìm giá trị nhỏ nhất của biểu thức P=\(\frac{A}{B}\)
Cho biểu thức P=\(\left(\frac{2a+1}{\sqrt{a^3}-1}-\frac{\sqrt{a}}{a+\sqrt{a}+1}\right).\left(\frac{1+\sqrt{a^3}}{1+\sqrt{a}}-\sqrt{a}\right)\)
a/ Rút gọn P
b/ Xét dấu của biểu thức P.\(\sqrt{1-a}\)
Rút gọn biểu thức
\(B=\left(\frac{6}{a-1}+\frac{10-2\sqrt{a}}{a\sqrt{a}-a-\sqrt{a}+1}\right)\frac{\left(\sqrt{a}-1\right)^2}{4\sqrt{a}}\)
Cho biểu thức \(B=\left(\frac{\sqrt{a}}{\sqrt{a}+2}-\frac{\sqrt{a}}{\sqrt{a}-2}+\frac{4\sqrt{a}-1}{a-4}\right):\frac{1}{\sqrt{a}+2}\)
a.Rút gọn
b.Tìm giá trị của B tại \(a=6+4\sqrt{2}\)
Rút gọn biểu thức:
B=\(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)