\(C=\dfrac{1^{2010}+2^{2010}+3^{2010}+...+10^{2010}}{2^{2010}+4^{2010}+6^{2010}+...+20^{2010}}\)
\(=\dfrac{1^{2010}+2^{2010}+3^{2010}+...+10^{2010}}{1^{1010}.2^{2010}+2^{2010}.2^{2010}+2^{2010}.3^{2010}+...+2^{2010}.10^{2010}}\)
\(=\dfrac{1^{2010}+2^{2010}+3^{2010}+...+10^{2010}}{\left(1^{2010}+2^{2010}+3^{2010}+...+10^{2010}\right)+2^{2010}.2^{2010}.2^{2010}...2^{2010}}\)
\(=\dfrac{1}{2^{2010}+2^{2010}+2^{2010}+...+2^{2010}}\)
\(G=\dfrac{1^{2010}+2^{2010}+3^{2010}+...+10^{2010}}{2^{2010}+4^{2010}+....+20^{2010}}\\ =\dfrac{1^{2010}+2^{2010}+...+10^{2010}}{2^{2010}\left(1^{2010}+2^{2010}+...+10^{2010}\right)}\\ =\dfrac{1}{2^{2010}}\)
Theo bài ra, ta có:
\(G=\dfrac{1^{2010}+2^{2010}+3^{2010}+....+10^{2010}}{2^{2010}+4^{2010}+6^{2010}+....+20^{2010}}\)
\(\Rightarrow G=\dfrac{1^{2010}+2^{2010}+3^{2010}+....+10^{2010}}{2^{2010}\left(1^{1010}+2^{2010}+3^{2010}+....+10^{2010}\right)}\)
\(\Rightarrow G=\dfrac{1}{2^{2010}}\)
Vậy \(G=\dfrac{1}{2^{2010}}\)
\(G=\dfrac{1^{2010}+2^{2010}+3^{2010}+...+10^{2010}}{2^{2010}+4^{2010}+6^{2010}+...+20^{2010}}\)
Theo đề bài ra, ta có:
\(G=\dfrac{1^{2010}+2^{2010}+3^{2010}+...+10^{2010}}{2.\left(1^{2010}+2^{2010}+3^{2010}+...+10^{2010}\right)}\)
\(G=\dfrac{1}{2^{2010}}\)
Vậy...