Bài tập cuối chương 3

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Rút gọn biểu thức \(\frac{1}{{2\sqrt a  + \sqrt 2 }} - \frac{1}{{2\sqrt a  - \sqrt 2 }}\) với \(a \ge 0\), \(a \ne \frac{1}{2}\), ta có kết quả

A. \(\frac{{\sqrt 2 }}{{1 - 2a}}\)

B. \(\frac{{\sqrt 2 }}{{2a - 1}}\)

C. \(\frac{{\sqrt a }}{{2a - 1}}\)

D. \(\frac{{\sqrt 2 }}{{1 - a}}\)

datcoder
25 tháng 10 lúc 10:57

\(\begin{array}{l}\frac{1}{{2\sqrt a  + \sqrt 2 }} - \frac{1}{{2\sqrt a  - \sqrt 2 }}\\ = \frac{{2\sqrt a  - \sqrt 2  - \left( {2\sqrt a  + \sqrt 2 } \right)}}{{\left( {2\sqrt a  + \sqrt 2 } \right)\left( {2\sqrt a  - \sqrt 2 } \right)}}\\ = \frac{{ - 2\sqrt 2 }}{{{{\left( {2\sqrt a } \right)}^2} - {{\left( {\sqrt 2 } \right)}^2}}}\\ = \frac{{ - 2\sqrt 2 }}{{4a - 2}}\\ = \frac{{ - 2\sqrt 2 }}{{2(a - 1)}}\\ = \frac{{ - \sqrt 2 }}{{(a - 1)}} = \frac{{\sqrt 2 }}{{1 - a}}\end{array}\)

Vậy chọn đáp án D