\(\begin{array}{l}\frac{1}{{2\sqrt a + \sqrt 2 }} - \frac{1}{{2\sqrt a - \sqrt 2 }}\\ = \frac{{2\sqrt a - \sqrt 2 - \left( {2\sqrt a + \sqrt 2 } \right)}}{{\left( {2\sqrt a + \sqrt 2 } \right)\left( {2\sqrt a - \sqrt 2 } \right)}}\\ = \frac{{ - 2\sqrt 2 }}{{{{\left( {2\sqrt a } \right)}^2} - {{\left( {\sqrt 2 } \right)}^2}}}\\ = \frac{{ - 2\sqrt 2 }}{{4a - 2}}\\ = \frac{{ - 2\sqrt 2 }}{{2(a - 1)}}\\ = \frac{{ - \sqrt 2 }}{{(a - 1)}} = \frac{{\sqrt 2 }}{{1 - a}}\end{array}\)
Vậy chọn đáp án D
Đúng 0
Bình luận (0)