b: \(=\left|b\cdot\left(b-1\right)\right|=b\cdot\left|b-1\right|\)
c: \(=\left|a\right|\cdot\left|a+1\right|=a\left(a+1\right)=a^2+a\)
d: \(=1-2a-4a=-6a+1\)
b: \(=\left|b\cdot\left(b-1\right)\right|=b\cdot\left|b-1\right|\)
c: \(=\left|a\right|\cdot\left|a+1\right|=a\left(a+1\right)=a^2+a\)
d: \(=1-2a-4a=-6a+1\)
Rút gọn các biểu thức sau:
a. \(\sqrt{0,36a^2}\) với a < 0;
b. \(\sqrt{a^4\left(3-a\right)^2}\) với \(a\ge3;\)
c. \(\sqrt{27.48\left(1-a\right)^2}\) với a > 1.
d. \(\dfrac{1}{a-b}\sqrt{a^4\left(a-b\right)^2}\) với a > b.
Rút gọn các biểu thức :
a) \(\sqrt{4\left(a-3\right)^2}\) với \(a\ge3\)
b) \(\sqrt{9\left(b-2\right)^2}\) với \(b< 2\)
c) \(\sqrt{a^2\left(a+1\right)^2}\) với \(a>0\)
d) \(\sqrt{b^2\left(b-1\right)^2}\) với \(b< 0\)
bài 1 : rút gọn các biểu thức sau .
a, \(\sqrt{4\left(a-3\right)^2}+2\sqrt{a^2+4a+4}\left(a< -2\right)\)
b, \(\sqrt{\dfrac{\left(x-2\right)^2}{\left(3-2\right)^2}}+\dfrac{x^2-1}{x-3}\left(x< 3\right)\)
c, \(4x-\sqrt{8}+\dfrac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\)
bài 2 thực hiện phép tính :\
a, \(\sqrt{8-\sqrt[2]{7}}\times\sqrt{8+\sqrt[2]{7}}\)
b, \(\sqrt{4+\sqrt{8}+}+\sqrt{2}+\sqrt{2+\sqrt{2}}\times\sqrt{2-\sqrt{2+2}}\)
c, \(\left(4+\sqrt{15}\right)\times\sqrt{10}-\sqrt{6}\times\sqrt{4-\sqrt{15}}\)
d, \(\left(2+\sqrt{3}\right)^2-\left(2-\sqrt{3}\right)\times\left(2+\sqrt{3}\right)\)
\(B=\dfrac{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}-2}{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}+2}\)với x > 0 rút gọn biểu thức ( cho em xin lời giải chi tiết ạ )
Rút gọn :
a, A = \(\sqrt{27.48\left(1-a^2\right)}vớia>1\)
b, B = \(\frac{1}{a-b}\sqrt{a^4\left(a-b^2\right)}\) với a > b
c, C= \(\sqrt{5a}.\sqrt{45a}-3a\) với a >= 0
bài 1 ; thực hiện phép tính
a, \(\left(\sqrt{12}+\sqrt{75}+\sqrt{27}\right):\sqrt{15}\)
b, \(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}\)
c, \(\sqrt{27^2-23^2}+\sqrt{37^2-35^2}\)
d,\(\left(\sqrt{\dfrac{1}{7}}+\sqrt{\dfrac{16}{7}}+\sqrt{\dfrac{9}{7}}\right):\sqrt{7}\)
bài 2 : rút gọn
a, \(A=\dfrac{2}{x^2-y^2}\times\sqrt{\dfrac{3x^2+6xy+3y^2}{4}}\)
b, \(B=\dfrac{1}{2a-1}\times\sqrt{5a^4\left(1-4a+4a^2\right)}\)
Cho a,b,c là ba số dương thỏa mãn ab+bc+ca=1
Tính tổng:S=\(a.\sqrt{\dfrac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}+b.\sqrt{\dfrac{\left(1+c^2\right)\left(1+a^2\right)}{1+b^2}}+c.\sqrt{\dfrac{\left(1+a^2\right)\left(1+b^2\right)}{1+c^2}}\)
BÀI 1 : THỰC HIỆN PHÉP TÍNH
a, \(\left(1+\sqrt{3}-\sqrt[2]{2}\right)\times\left(1+\sqrt{3}+\sqrt[2]{2}\right)\)
b, \(\left(\dfrac{3}{2}\times\sqrt{6}+2\times\sqrt{\dfrac{2}{3}}-4\times\sqrt{\dfrac{3}{2}}\right)\times\left(3\times\sqrt{\dfrac{2}{3}}-\sqrt{12}-\sqrt{6}\right)\)
BÀI 2 : rút gọn
B = \(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-2}}\)
rút gọn hoạc tính giá trị các biểu thức sau
1)1+\(\sqrt{\dfrac{\left(x-1\right)^2}{x-1}}\)
2)\(\sqrt{\left(x-2\right)^2}+\dfrac{x-2}{\sqrt{\left(x-2\right)^2}}\)
3)\(\sqrt{m}-\sqrt{m-2\sqrt{m}+1}\)