\(A=sina\sqrt{1+tan^2a}=sina\sqrt{1+\dfrac{sin^2a}{cos^2a}}=sina\sqrt{\dfrac{cos^2a+sin^2a}{cos^2a}}\)
\(A=sina.\sqrt{\dfrac{1}{cos^2a}}=\dfrac{sina}{\left|cosa\right|}\) \(=\left[{}\begin{matrix}\dfrac{sina}{cosa}=tana\\\dfrac{sina}{-cosa}=-tana\end{matrix}\right.\) nếu \(\left[{}\begin{matrix}cosa>0\\cosa< 0\end{matrix}\right.\)