a) \(\dfrac{2^{15}.9^4}{6^6.8^3}=\dfrac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^6.\left(2^3\right)^3}=\dfrac{2^{15}.3^8}{3^6.2^6.2^9}=\dfrac{2^{15}.3^8}{3^6.2^{15}}=3^2=9\)
b) \(\dfrac{45^{15}.5^{15}}{75^{15}}=\dfrac{\left(9.5\right)^{15}.5^{15}}{\left(3.25\right)^{15}}=\dfrac{9^{15}.5^{15}.5^{15}}{3^{15}.25^{15}}=\dfrac{\left(3^2\right)^{15}.5^{30}}{3^{15}.\left(5^2\right)^{15}}\)
\(\dfrac{3^{30}.5^{30}}{3^{15}.5^{30}}=3^{15}=14348907\)
c) \(\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}=\dfrac{2^{30}+2^{20}}{2^{12}+2^{22}}=\dfrac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(1+2^{10}\right)}\)
\(=\dfrac{2^{20}}{2^{12}}=2^8=256\)
d) \(\dfrac{ \left(x^2\right)^5}{\left(x^5\right)^2}=\dfrac{x^{10}}{x^{10}}=1\)