Phương trình nào sau đây là phương trình tổng quát của đường thẳng?
A. \( - x - 2y + 3 = 0\)
B. \(\left\{ \begin{array}{l}x = 2 + t\\y = 3 - t\end{array} \right.\)
C. \({y^2} = 2x\)
D. \(\frac{{{x^2}}}{{10}} + \frac{{{y^2}}}{6} = 1\)
Phương trình nào sau đây là phương trình đường tròn?
A. \({x^2} - {y^2} = 1\)
B. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = - 4\)
C. \({x^2} + {y^2} = 2\)
D. \({y^2} = 8x\)
Phương trình nào sau đây là phương trình chính tắc của đường hyperbol?
A. \(\frac{{{x^2}}}{3} - \frac{{{y^2}}}{2} = - 1\)
B. \(\frac{{{x^2}}}{1} - \frac{{{y^2}}}{6} = 1\)
C. \(\frac{{{x^2}}}{6} + \frac{{{y^2}}}{1} = 1\)
D. \(\frac{{{x^2}}}{2} + \frac{{{y^2}}}{1} = - 1\)
Phương trình nào sau đây là phương trình chính tắc của đường elip?
A. \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{9} = 1\)
B. \(\frac{{{x^2}}}{1} + \frac{{{y^2}}}{6} = 1\)
C. \(\frac{{{x^2}}}{4} - \frac{{{y^2}}}{1} = 1\)
D. \(\frac{{{x^2}}}{2} + \frac{{{y^2}}}{1} = 1\)
Phương trình nào sau đây là phương trình chính tắc của đường parabol?
A. \({x^2} = 4y\)
B. \({x^2} = - 6y\)
C. \({y^2} = 4x\)
D. \({y^2} = - 4x\)
Cho đường tròn (C) có phương trình \({x^2} + {y^2} - 4x + 6y - 12 = 0\) .
a) Tìm toạ độ tâm I và bán kính R của (C).
b) Chứng minh rằng điểm M(5; 1) thuộc (C). Viết phương trình tiếp tuyến d của (C) tại M.
Cho hypebol có phương trình: \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\)
a) Tìm các giao điểm \({A_1},{A_2}\)của hypebol với trục hoành (hoành độ của \({A_1}\)nhỏ hơn của \({A_2}\)).
b) Chứng minh rằng, nếu điểm M(x; y) thuộc nhánh nằm bên trái trục tung của hypebol thì \(x \le - a\) , nêu điêm M(x, y) thuộc nhánh nằm bên phải trực tung của hypebol thì \(x \ge a\).
c) Tìm các điểm\({M_1},{M_2}\) tương ứng thuộc các nhánh bên trái, bên phải trực tung của hypebol để \({M_1}{M_2}\) nhỏ nhất.
Trong mặt phẳng toạ độ, cho hai điểm A(-1; 0) và B(3; 1).
a) Viết phương trình đường tròn tâm A và đi qua B.
b) Viết phương trình tổng quát của đường thẳng AB.
c) Viết phương trình đường tròn tâm O và tiếp xúc với đường thẳng AB.
Cho elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b > 0} \right)\)
a) Tìm các giao điểm \({A_1},{A_2}\) của (E) với trục hoành và các giao điểm \({B_1},{B_2}\) của (E) với trục tung. Tính \({A_1}{A_2},{B_1}{B_2}\).
b) Xét một điểm bất kì \(M\left( {{x_o};{y_o}} \right)\) thuộc (E).
Chứng minh rằng, \({b^2} \le x_o^2 + y_o^2 \le {a^2}\) và \(b \le OM \le a\).
Chú ý: \({A_1}{A_2},{B_1}{B_2}\)tương ứng được gọi là trục lớn, trục nhỏ của elip (E) và tương ứng có độ dài là 2a, 2b.