`cos^6 x+sin^6 x=1-cos 2x`
`<=>(cos^2 x+sin^2 x)(cos^4 x-cos^2 x.sin^2 x+sin^4 x)=1-1+2sin^2 x`
`<=>(cos^2 x+sin^2 x)-3cos^2 x.sin^2 x=2sin^2 x`
`<=>1-3[1+cos 2x]/2 . [1-cos 2x]/2=2[1-cos 2x]/2`
`<=>4-3(1+cos 2x)(1-cos 2x)=4(1-cos 2x)`
`<=>4-3+3cos^2 2x=4-4cos 2x`
`<=>3cos^2 2x+4cos 2x-3=0`
`<=>` $\left[\begin{matrix} cos 2x=\dfrac{-2+\sqrt{13}}{3}\\cos 2x=\dfrac{-2-\sqrt{13}}{3} (VN)\end{matrix}\right.$
`<=>cos 2x=[-2+\sqrt{13}]/3`
`->\bb C`