Bài 4: Ôn tập chương Hàm số lượng giác và phương trình lượng giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngô Chí Thành

Phương trình : \(4sin^22x-3sin2x.cos2x-cos^22x=0\) có bao nhiêu nghiệm trong khoảng \(\left(0;\pi\right)\) ?

Akai Haruma
2 tháng 10 2020 lúc 0:42

Lời giải:

PT $\Leftrightarrow (\sin 2x-\cos 2x)(4\sin 2x+\cos 2x)=0$

$\Rightarrow \sin 2x=\cos 2x$ hoặc $4\sin 2x+\cos 2x=0$

Nếu $\sin 2x=\cos 2x$. Kết hợp với $\sin ^22x+\cos ^22x=1$ suy ra $\sin 2x=\cos 2x=\frac{\pm}{\sqrt{2}}$

$\Rightarrow x=\frac{\pi}{8}+\frac{k\pi}{2}$ với $k$ nguyên

Vì $x\in (0;\pi)$ nên $x=\frac{\pi}{8}$ hoặc $x=\frac{5\pi}{8}$

Nếu $4\sin 2x+\cos 2x=0$

$\Rightarrow \tan 2x=\frac{-1}{4}$

$\Rightarrow x=\frac{1}{2}k\pi +\frac{1}{2}\tan ^{-1}\frac{-1}{4}$

Vì $x\in (0;\pi)$ nên $x=\frac{1}{2}\pi +\frac{1}{2}\tan ^{-1}\frac{-1}{4};\pi +\frac{1}{2}\tan ^{-1}\frac{-1}{4}$

Vậy có $4$ nghiệm thỏa mãn.

Khách vãng lai đã xóa
Cao Ngọc Diệp
17 tháng 8 2020 lúc 10:45

Lời giải:

PT $\Leftrightarrow (\sin 2x-\cos 2x)(4\sin 2x+\cos 2x)=0$

$\Rightarrow \sin 2x=\cos 2x$ hoặc $4\sin 2x+\cos 2x=0$

Nếu $\sin 2x=\cos 2x$. Kết hợp với $\sin ^22x+\cos ^22x=1$ suy ra $\sin 2x=\cos 2x=\frac{\pm}{\sqrt{2}}$

$\Rightarrow x=\frac{\pi}{8}+\frac{k\pi}{2}$ với $k$ nguyên

Vì $x\in (0;\pi)$ nên $x=\frac{\pi}{8}$ hoặc $x=\frac{5\pi}{8}$

Nếu $4\sin 2x+\cos 2x=0$

$\Rightarrow \tan 2x=\frac{-1}{4}$

$\Rightarrow x=\frac{1}{2}k\pi +\frac{1}{2}\tan ^{-1}\frac{-1}{4}$

Vì $x\in (0;\pi)$ nên $x=\frac{1}{2}\pi +\frac{1}{2}\tan ^{-1}\frac{-1}{4};\pi +\frac{1}{2}\tan ^{-1}\frac{-1}{4}$

Vậy có $4$ nghiệm thỏa mãn.

Khách vãng lai đã xóa

Các câu hỏi tương tự
Ngô Chí Thành
Xem chi tiết
lu nguyễn
Xem chi tiết
James Pham
Xem chi tiết
James Pham
Xem chi tiết
Thùy Oanh Nguyễn
Xem chi tiết
phan cẩm tú
Xem chi tiết
Violet
Xem chi tiết
thai thai
Xem chi tiết
Thùy Oanh Nguyễn
Xem chi tiết